This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082307 #13 Sep 08 2022 08:45:10 %S A082307 1,4,16,66,280,1208,5248,22816,98944,427392,1838080,7870976,33568768, %T A082307 142637056,604045312,2550276096,10737713152,45097779200,188979871744, %U A082307 790276734976,3298540650496,13743907405824,57174629810176 %N A082307 Expansion of e.g.f. (1+x)*exp(3*x)*cosh(x). %C A082307 Binomial transform of A002306; a(n)=(A082308(n)+A079028(n))/2 %H A082307 G. C. Greubel, <a href="/A082307/b082307.txt">Table of n, a(n) for n = 0..1000</a> %H A082307 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,-52,96,-64). %F A082307 a(n) = ((n+2)*2^(n-1) + (n+4)*4^(n-1))/2. %F A082307 G.f.: ((1-3x)/(1-4x)^2 + (1-x)/(1-2x)^2)/2. %F A082307 E.g.f. (1+x)*exp(3*x)*cosh(x). %t A082307 With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Sep 16 2018 *) %o A082307 (PARI) x='x+O('x^30); Vec(serlaplace((1+x)*exp(3*x)*cosh(x))) \\ _G. C. Greubel_, Sep 16 2018 %o A082307 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(3*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Sep 16 2018 %Y A082307 Cf. A082308. %K A082307 easy,nonn %O A082307 0,2 %A A082307 _Paul Barry_, Apr 09 2003