A082379 Number of length-n 7/3-power-free words over the alphabet {0,1}.
1, 2, 4, 6, 10, 14, 20, 24, 30, 40, 48, 56, 64, 76, 82, 92, 106, 124, 142, 152, 172, 192, 210, 220, 234, 256, 284, 308, 314, 332, 356, 372, 392, 420, 456, 488, 524, 560, 588, 608, 640, 684, 736, 764, 796, 832, 874, 892, 912, 948, 994, 1020, 1060, 1112, 1184
Offset: 0
Keywords
Links
- Juhani Karhumäki and Jeffrey Shallit, Polynomial versus exponential growth in repetition-free binary words, arXiv:math/0304095 [math.CO], April 7 2003.
- Juhani Karhumäki and Jeffrey Shallit, Polynomial versus exponential growth in repetition-free binary words, Journal of Combinatorial Theory, Series A 105 (2004) 335-347.
Extensions
Name changed by Jeffrey Shallit, Sep 26 2014
More terms from Jeffrey Shallit, Jul 17 2021