This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082382 #5 Oct 01 2013 17:57:37 %S A082382 1,1,2,4,3,9,81,65,61,37,58,89,145,42,20,4,4,16,37,58,89,145,42,20,4, %T A082382 5,25,29,85,89,145,42,20,4,6,36,45,41,17,50,25,29,85,89,145,42,20,4,7, %U A082382 49,97,130,10,1,8,64,52,29,85,89,145,42,20,4,9,81,65,61,37,58,89,145,42,20 %N A082382 Table which contains in row n the track of n->A003132(n) until reaching 1 or 4. %C A082382 If n=1 or 4, the row is extended until reaching 1 or 4 a second time after the starting value. %C A082382 Conjecture: Each sequence terminates with 1 or the 4 16 37 58 89 145 42 20 4... loop. %D A082382 C. Stanley Ogilvy, Tomorrow's Math, 1972 %e A082382 The table starts in row 1 as %e A082382 1,1 ; %e A082382 2,4 ; %e A082382 3,9,81,65,61,37,58,89,145,42,20,4; %e A082382 4,16,37,58,89,145,42,20,4; %e A082382 5,25,29,85,89,145,42,20,4; %e A082382 6,36,45,41,17,50,25,29,85,89,145,42,20,4; %o A082382 (PARI) \ The squared digital root of a number output initial terms digitsq2(m) = {y=0; for(x=1,m, digitsq(x) ) } digitsq(n) = { print1(n" "); while(1, s=0; while(n > 0, d=n%10; s = s+d*d; n=floor(n/10); ); print1(s" "); if(s==1 || s==4,break); n=s; ) } %K A082382 easy,nonn,base,tabf %O A082382 1,3 %A A082382 _Cino Hilliard_, Apr 13 2003 %E A082382 Redefined as an irregular table, merged 8 and 9 to 89 at one place - _R. J. Mathar_, Mar 14 2010