cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082392 Expansion of (1/x) * Sum_{k>=0} x^2^k / (1 - 2*x^2^(k+1)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 8, 1, 16, 4, 32, 2, 64, 8, 128, 1, 256, 16, 512, 4, 1024, 32, 2048, 2, 4096, 64, 8192, 8, 16384, 128, 32768, 1, 65536, 256, 131072, 16, 262144, 512, 524288, 4, 1048576, 1024, 2097152, 32, 4194304, 2048, 8388608, 2, 16777216
Offset: 0

Views

Author

Ralf Stephan, Jun 07 2003

Keywords

Crossrefs

Programs

  • Maple
    nmax := 48: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := 2^n od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 11 2013
    A082392 := proc(n)
        2^A025480(n) ;
    end proc:
    seq(A082392(n),n=0..100) ; # R. J. Mathar, Jul 16 2020
  • Mathematica
    a[n_] := 2^(((n+1)/2^IntegerExponent[n+1, 2]+1)/2-1);
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 15 2023 *)
  • PARI
    for(n=0, 50, l=ceil(log(n+1)/log(2)); t=polcoeff(sum(k=0, l, (x^2^k)/(1-2*x^2^(k+1)))/x + O(x^(n+1)), n); print1(t", ");) ;

Formula

a(0) = 1, a(2*n) = 2^n, a(2*n+1) = a(n).
a(n) = 2^A025480(n) = 2^(A003602(n)-1).
a((2*n+1)*2^p-1) = 2^n, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 11 2013