A082394 Let p = n-th prime of the form 4k+3, take the solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and smallest y >= 1; sequence gives value of y.
1, 3, 3, 39, 5, 273, 531, 7, 69, 5967, 413, 9, 9, 22419, 93, 419775, 927, 6578829, 140634693, 5019135, 13, 313191, 650783, 1153080099, 19162705353, 15, 15, 400729, 231957, 8579, 7044978537, 8219541, 5052633, 957397, 153109862634573, 34443, 19
Offset: 1
Examples
For n=3, p = 11, x=10, y=3 since we have 10^2 = 11*3^2 + 1, so a(3) = 3.
References
- C. Stanley Ogilvy, Tomorrow's Math, 1972, p. 119.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1990
Programs
-
Mathematica
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Transpose[ PellSolve /@ Select[ Prime[ Range[72]], Mod[ #, 4] == 3 &]][[2]] (* Robert G. Wilson v, Sep 02 2004 *)
-
PARI
p4xp3(n,m) = { forstep(p=3,m,4, for(y=1,n, if(isprime(p), x=y*y*p+1; if(issquare(x), print1(y" "); break; ) ) ) ) }
Extensions
More terms from Robert G. Wilson v, Apr 15 2003; recomputed Sep 03 2004