cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082399 a(1) = 1; thereafter, a(n) is the smallest nonnegative number such that the number Sum_{i=1..n} a(i)*10^(n-i) is divisible by n.

Original entry on oeis.org

1, 0, 2, 0, 0, 0, 5, 6, 4, 0, 5, 10, 2, 2, 5, 6, 16, 8, 14, 0, 7, 18, 19, 2, 5, 10, 6, 0, 25, 20, 2, 20, 17, 12, 20, 28, 13, 4, 13, 30, 16, 20, 36, 4, 35, 28, 28, 16, 29, 10, 39, 14, 12, 4, 50, 20, 14, 24, 7, 50, 14, 54, 55, 18, 10, 44, 62, 52, 63, 50, 7, 18, 6, 62, 55, 54, 54, 54, 35, 10
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2009

Keywords

Comments

Suggested by studying A144688. If all a(n) had turned out to be in the range 0 to 9 then this sequence would have produced a counterexample to the assertion that A144688 is finite.
The old entry with this A-number was a duplicate of A080825.

Examples

			After we have the first 11 terms, 1,0,2,0,0,0,5,6,4,0,5, the next number x must be chosen so that 102000564050 + x is divisible by 12; this implies that x = 10.
		

Crossrefs

See A051883 for another version. Cf. A144688.

Programs

  • Maple
    M:=80; a[1]:=1; N:=1;
    for n from 2 to M do
    N:=10*N; t2:=N mod n;
    if t2 = 0 then a[n]:=0; else a[n]:=n-t2; fi;
    N:=N+a[n]; od: [seq(a[n],n=1..M)];