cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082400 Numbers k such that 2^k + 3^(k-1) is prime.

This page as a plain text file.
%I A082400 #15 Jul 14 2023 01:41:01
%S A082400 1,2,3,4,5,6,7,10,12,13,16,18,23,33,34,36,37,47,48,60,64,81,102,155,
%T A082400 160,174,222,226,237,251,282,348,790,993,1608,1632,1984,2073,3617,
%U A082400 3703,5077,5958,6336,8772,10204,10985,12204,12351,13661,14892,29206,30287,33221,34384
%N A082400 Numbers k such that 2^k + 3^(k-1) is prime.
%e A082400 k = 5 gives 32 + 81 = 113, a prime.
%t A082400 Do[p = 2^n + 3^(n-1); If[PrimeQ[p], Print[n]], {n, 1, 10^4}] (* _Ryan Propper_, Jul 23 2005 *)
%o A082400 (PARI) is(n)=ispseudoprime(2^n+3^(n-1)) \\ _Charles R Greathouse IV_, Jun 12 2017
%K A082400 nonn
%O A082400 1,2
%A A082400 _Labos Elemer_, Apr 14 2003
%E A082400 a(37)-a(44) from _Ryan Propper_, Jul 23 2005
%E A082400 a(45)-a(54) from _Michael S. Branicky_, Jul 13 2023