A082404 Triangle in which n-th row gives trajectory of n under the map x -> x/2 if x is even, x -> x-1 if x is odd, stopping when we reach 1.
1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 3, 2, 1, 7, 6, 3, 2, 1, 8, 4, 2, 1, 9, 8, 4, 2, 1, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 12, 6, 3, 2, 1, 13, 12, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 15, 14, 7, 6, 3, 2, 1, 16, 8, 4, 2, 1, 17, 16, 8, 4, 2, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 3, 2, 1; 4, 2, 1, 5, 4, 2, 1; 6, 3, 2, 1; 7, 6, 3, 2, 1; 8, 4, 2, 1; 9, 8, 4, 2, 1; ...
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A082404 := proc(n,k) option remember: if(k = 1)then return n:elif(A082404(n,k-1) mod 2 = 0)then return A082404(n,k-1)/2: else return A082404(n,k-1)-1: fi: end: for n from 1 to 20 do k:=1: while A082404(n,k)>=1 do printf("%d, ",A082404(n,k)); k:=k+1: od:printf("\n");od: # Nathaniel Johnston, Apr 21 2011
Formula
T(n, 1) = n, T(n, 2) = A029578(n).
Extensions
More terms and changed offset from Nathaniel Johnston, Apr 21 2011
Comments