This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082412 #22 Apr 25 2025 09:48:03 %S A082412 1,6,44,344,2736,21856,174784,1398144,11184896,89478656,715828224, %T A082412 5726623744,45812985856,366503878656,2932031012864,23456248070144, %U A082412 187649984495616,1501199875833856,12009599006408704,96076792050745344,768614336404914176 %N A082412 a(n) = (2*8^n + 2^n)/3. %C A082412 Binomial transform of A083076. %H A082412 Nathaniel Johnston, <a href="/A082412/b082412.txt">Table of n, a(n) for n = 0..250</a> %H A082412 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-16). %F A082412 G.f.: (1-4*x)/((1-2*x)*(1-8*x)); %F A082412 E.g.f.: (2*exp(8*x) + exp(2*x))/3. %F A082412 a(n) = (2*8^n + 2^n)/3. %F A082412 a(n) = 2^n*A001045(2n+1). - _Paul Barry_, Sep 10 2007 %p A082412 seq((2*8^n+2^n)/3,n=0..20); # _Nathaniel Johnston_, Jun 26 2011 %t A082412 Table[(2*8^n+2^n)/3,{n,0,30}] (* or *) LinearRecurrence[{10,-16},{1,6},30] (* _Harvey P. Dale_, Sep 30 2018 *) %o A082412 (PARI) a(n)=(2*8^n+2^n)/3 \\ _Charles R Greathouse IV_, Oct 07 2015 %o A082412 (Python) %o A082412 def A082412(n): return (2<<(n<<1)|1)//3<<n # _Chai Wah Wu_, Apr 25 2025 %Y A082412 Cf. A082413. %K A082412 easy,nonn %O A082412 0,2 %A A082412 _Paul Barry_, Apr 23 2003