A082414 a(n) = (2*10^n + 4^n)/3.
1, 8, 72, 688, 6752, 67008, 668032, 6672128, 66688512, 666754048, 6667016192, 66668064768, 666672259072, 6666689036288, 66666756145152, 666667024580608, 6666668098322432, 66666672393289728, 666666689573158912, 6666666758292635648
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..250
- Index entries for linear recurrences with constant coefficients, signature (14,-40).
Programs
-
Maple
seq((2*10^n+4^n)/3,n=0..19); # Nathaniel Johnston, Jun 26 2011
-
PARI
a(n) = (2*10^n+4^n)/3; \\ Altug Alkan, Sep 08 2018
Formula
G.f.: (1-6*x)/((1-4*x)*(1-10*x)).
E.g.f.: (2*exp(10*x) + exp(4*x))/3.
a(n) = (2*10^n + 4^n)/3.
Comments