This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082433 #18 Sep 06 2021 03:11:40 %S A082433 3,5,7,7,11,11,11,11,13,23,17,17,17,41,191,47,31,53,53,53,31,179,61, %T A082433 61,337,131,523,523,419,223,223,223,223,79,3821,3821,3821,23399,21269, %U A082433 21269,3607 %N A082433 a(n) = A072181(n) - p, where p is the largest prime < A072181(n) - 1. %C A082433 Are all terms prime? %C A082433 All terms are odd. - _Michael S. Branicky_, Sep 05 2021 %e A082433 a(4) = A072181(4)-7 = 12-7 = 5. %o A082433 (Python) %o A082433 from sympy import factorint, isprime %o A082433 def afindn(terms): %o A082433 prev_factors, prevan, prevk, n = dict(), 1, None, 2 %o A082433 for n in range(2, terms+1): %o A082433 n_factors, an = factorint(n), 1 %o A082433 for pi in set(prev_factors.keys()) | set(n_factors.keys()): %o A082433 ei = prev_factors[pi] if pi in prev_factors else 1 %o A082433 fi = n_factors[pi] if pi in n_factors else 1 %o A082433 an *= pi**(ei*fi) %o A082433 if n >= 3: %o A082433 if an != prevan: %o A082433 k = 3 %o A082433 while not isprime(an - k): k += 2 %o A082433 else: %o A082433 k = prevk %o A082433 print(k, end=", ") %o A082433 prevk = k %o A082433 prev_factors, prevan = factorint(an), an %o A082433 afindn(36) # _Michael S. Branicky_, Sep 05 2021 %Y A082433 Cf. A005235, A037153, A037155, A072181, A082432. %K A082433 nonn,more %O A082433 3,1 %A A082433 _Naohiro Nomoto_, Apr 25 2003 %E A082433 a(36)-a(40) from _Jinyuan Wang_, Sep 05 2020 %E A082433 a(41)-a(43) from _Michael S. Branicky_, Sep 05 2021