This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082437 #6 Sep 22 2013 15:58:09 %S A082437 1,0,5,1,36,15,228,231,1313,1939,6971,11899,33118,59543,140620,254476, %T A082437 538042,959028,1871808,3258512,5981444,10140360,17726166,29257848, %U A082437 49127549,79032258,128267727,201437596 %N A082437 Coefficient of s(2n) in s(n,n) * s(n,n) * s(n,n) * s(n,n) * s(n,n), where s(2n) is the Schur function corresponding to the trivial representation, s(n,n) is a Schur function corresponding two the two row partition and * represents the inner or Kronecker product of symmetric functions. %D A082437 I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford Univ. Press, second edition, 1995. %F A082437 a(n) = Sum_{gamma} Chi^{(n, n)}( gamma )^5/z(gamma) the sum is over all partitions gamma of 2n Chi^lambda(gamma) is the value of the symmetric group character z(gamma) is the size of the stablizer of the conjugacy class of symmetric group indexed by the partition gamma %p A082437 compsclr := proc(k) local gamma; add( combinat[Chi]( [k,k], gamma)^5/ZEE(gamma),gamma= combinat[partition](2*k)); end: ZEE := proc (mu) local res, m, i; m := 1; res := convert(mu,`*`); for i from 2 to nops(mu) do if mu[i] <> mu[i-1] then m := 1 else m := m+1 fi; res := res*m; od; res; end: %Y A082437 Cf. A008763 for Chi( [k, k], gamma)^4/ZEE(gamma) instead of Chi( [k, k], gamma)^5/ZEE(gamma) in the programs above. %K A082437 nonn %O A082437 0,3 %A A082437 _Mike Zabrocki_, Apr 25 2003