cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083344 a(n) = A082457(n) - A066715(n) = gcd(2n+1, A057643(2n+1)) - gcd(2n+1, A000203(2n+1)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 30, 0, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Examples

			n=22: 2n+1 = 45, A057643(45) = 5520, a(22) = gcd(45,5520) = 15 while A066715(45) = 3; a(22) = 15-3 = 12; sites where nonzero terms appear see in A082452.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] (*A066715=*)t1=Table[GCD[2*n+1, DivisorSigma[1, 2*n+1]], {n, 1, 2048}]; (*A082457=*)t2=Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}]; (*A083344=*)t2-t1;
  • PARI
    a(n)=gcd(lcm(apply(d->d+1,divisors(2*n+1))),2*n+1)-gcd(sigma(2*n+1),2*n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(2n+1, lcm(1+D(2n+1))) - gcd(2n+1, sigma(2n+1)), gcd(2n+1, A057643(2n+1)) - gcd(2n+1, A000203(2n+1)), where D(x) is the set of divisors of x.

A082453 a(n)=2n+1 where n is such that A083344(n) is zero.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Examples

			First two missing odd numbers are 45 and 75; missing terms are in A082452.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] (*A066715=*)t1=Table[GCD[2*n+1, DivisorSigma[1, 2*n+1]], {n, 1, 2048}]; (*A082457=*)t2=Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}]; (*A083344=*)t3=t2-t1; (*A082453=*)1+2*Flatten[Position[Abs[Sign[t3]], 0]];
Showing 1-2 of 2 results.