This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082467 #58 Jul 03 2025 03:07:39 %S A082467 1,2,1,4,3,2,3,6,1,6,3,2,3,6,1,12,3,2,9,6,5,6,3,4,9,12,1,12,9,4,3,6,5, %T A082467 6,9,2,3,12,1,24,3,2,15,6,5,12,3,8,9,6,7,12,3,4,15,12,1,18,9,4,3,6,5, %U A082467 6,15,2,3,12,1,6,15,4,3,6,5,18,9,2,15,24,5,12,3,14,9,18,7,12,9,4,15,6,7,30,9 %N A082467 Least k>0 such that n-k and n+k are both primes. %C A082467 The existence of k>0 for all n >= 4 is equivalent to the strong Goldbach Conjecture that every even number >= 8 is the sum of two distinct primes. %C A082467 n and k are coprime, because otherwise n + k would be composite. So the rational sequence r(n) = a(n)/n = k/n is injective. - _Jason Kimberley_, Sep 21 2011 %C A082467 Because there are arbitrarily many composites from m!+2 to m!+m, there are also arbitrarily large a(n) but they increase very slowly. The twin prime conjecture implies that infinitely many a(n) are 1. - _Juhani Heino_, Apr 09 2020 %H A082467 Klaus Brockhaus, <a href="/A082467/b082467.txt">Table of n, a(n) for n = 4..5000</a> %H A082467 OEIS (Plot 2), <a href="/plot2a?name1=A082467&name2=A000027&tform1=log+base+10&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">log_10(A082467(n)/n) vs n </a> %H A082467 J. S. Kimberley, <a href="/wiki/User:Jason_Kimberley/A082467">A082467</a> %F A082467 A078496(n)-a(n) = A078587(n)+a(n) = n. %e A082467 n=10: k=3 because 10-3 and 10+3 are both prime and 3 is the smallest k such that n +/- k are both prime. %p A082467 A082467 := proc(n) local k; k := 1+irem(n,2); %p A082467 while n > k do if isprime(n-k) then if isprime(n+k) %p A082467 then RETURN(k) fi fi; k := k+2 od; print("Goldbach erred!") end: %p A082467 seq(A082467(i),i=4..90); # _Peter Luschny_, Sep 21 2011 %t A082467 f[n_] := Block[{k}, If[OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; Table[ f[n], {n, 4, 98}] (* _Robert G. Wilson v_, Mar 28 2005 *) %o A082467 (PARI) a(n)=if(n<0,0,k=1; while(isprime(n-k)*isprime(n+k) == 0,k++); k) %o A082467 (Magma) A082467 := func<n|exists(r){m:m in[1..n-2]|IsPrime(n-m) and IsPrime(n+m)} select r else-1>; [A082467(n):n in [4..98]]; // _Jason Kimberley_, Sep 03 2011 %Y A082467 Cf. A087695, A087696, A087697, A087678, A087679, A087680, A087681, A087682, A087683, A087711. %Y A082467 Cf. A129301 (records), A129302 (where records occur). %Y A082467 Cf. A047160 (allows k=0). %Y A082467 Cf. A078611 (subset for prime n). %K A082467 nonn %O A082467 4,2 %A A082467 _Benoit Cloitre_, Apr 27 2003 %E A082467 Entries checked by _Klaus Brockhaus_, Apr 08 2007