This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082476 #18 Feb 28 2023 02:05:47 %S A082476 1,5,5,5,5,25,5,5,5,25,5,25,5,25,25,5,5,25,5,25,25,25,5,25,5,25,5,25, %T A082476 5,125,5,5,25,25,25,25,5,25,25,25,5,125,5,25,25,25,5,25,5,25,25,25,5, %U A082476 25,25,25,25,25,5,125,5,25,25,5,25,125,5,25,25,125,5,25,5,25,25,25,25,125 %N A082476 a(n) = Sum_{d|n} mu(d)^2*tau(d)^2. %C A082476 More generally : sum(d|n, mu(d)^2*tau(d)^m) = (2^m+1)^omega(n). %H A082476 Antti Karttunen, <a href="/A082476/b082476.txt">Table of n, a(n) for n = 1..10000</a> %H A082476 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A082476 a(n) = 5^omega(n); multiplicative with a(p^e)=5. %F A082476 a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425. - _Enrique Pérez Herrero_, Mar 29 2010 %F A082476 a(n) = tau_5(rad(n)) = A061200(A007947(n)). - _Enrique Pérez Herrero_, Jun 24 2010 %F A082476 a(n) = A000351(A001221(n)). - _Antti Karttunen_, Jul 26 2017 %F A082476 From _Vaclav Kotesovec_, Feb 28 2023: (Start) %F A082476 Dirichlet g.f.: Product_{primes p} (1 + 5/(p^s - 1)). %F A082476 Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 10/p^(2*s) + 20/p^(3*s) - 15/p^(4*s) + 4/p^(5*s)), (with a product that converges for s=1). (End) %t A082476 tau[1, n_] := 1; SetAttributes[tau, Listable]; %t A082476 tau[k_, n_] := Plus @@ (tau[k - 1, Divisors[n]]) /; k > 1; %t A082476 A082476[n_] := Abs[DivisorSum[n, MoebiusMu[ # ]*tau[3, #^2] &]]; (* _Enrique Pérez Herrero_, Mar 29 2010 *) %t A082476 (* or more easy *) %t A082476 A082476[n_] := 5^PrimeNu[n] (* _Enrique Pérez Herrero_, Mar 29 2010 *) %o A082476 (PARI) a(n)=5^omega(n) %o A082476 (PARI) for(n=1, 100, print1(direuler(p=2, n, (4*X+1)/(1-X))[n], ", ")) \\ _Vaclav Kotesovec_, Feb 28 2023 %Y A082476 Cf. A000005, A000351, A001221, A007425, A007947, A008683, A061200, A074816. %K A082476 mult,nonn %O A082476 1,2 %A A082476 _Benoit Cloitre_, Apr 27 2003