cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082552 Number of sets of distinct primes, the greatest of which is prime(n), whose arithmetic mean is an integer.

This page as a plain text file.
%I A082552 #14 Oct 31 2013 12:17:22
%S A082552 1,1,2,5,6,12,21,31,58,111,184,356,665,1223,2260,4227,7930,15095,
%T A082552 28334,53822,102317,195012,373001,714405,1370698,2633383,5067643,
%U A082552 9765457,18846711,36413982,70431270,136391723,264384100,512959093,996173830
%N A082552 Number of sets of distinct primes, the greatest of which is prime(n), whose arithmetic mean is an integer.
%C A082552 The sum of the first 23 primes gives 874 = 23*38, see A045345. - _Alois P. Heinz_, Aug 02 2009
%H A082552 Alois P. Heinz, <a href="/A082552/b082552.txt">Table of n, a(n) for n = 1..100</a>
%e A082552 a(4) = 5: prime(4) = 7 and the five sets are (5+7)/2 = 6, 7/1 = 7, (3+7)/2 = 5, (2+3+7)/3 = 4, (3+5+7)/3 = 5.
%p A082552 b:= proc(t,i,m,h) option remember; if h=0 then `if` (t=0, 1, 0) elif i<1 or h>i then 0 else b (t, i-1, m, h) +b((t+ithprime(i)) mod m, i-1, m, h-1) fi end: a:= n-> add(b(ithprime(n) mod m, n-1, m, m-1), m=1..n): seq (a(n), n=1..40);  # _Alois P. Heinz_, Aug 02 2009
%t A082552 f[n_] := Block[{c = 0, k = n, lst = Prime@ Range@n, np = Prime@n, slst}, While[k < 2^n, slst = Subsets[lst, All, {k}]; If[Last@slst == np && Mod[Plus @@ slst, Length@slst] == 0, c++ ]; k++ ]; c]; Do[ Print[{n, f@n} // Timing], {n, 24}] (* _Robert G. Wilson v_ *)
%Y A082552 Cf. A051293, A072701.
%K A082552 nonn
%O A082552 1,3
%A A082552 _Naohiro Nomoto_, May 03 2003
%E A082552 a(22)-a(24) from _Robert G. Wilson v_, Jan 19 2007
%E A082552 Corrected a(23) and extended by _Alois P. Heinz_, Aug 02 2009