This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082553 #43 Aug 21 2021 15:51:43 %S A082553 1,1,1,3,1,1,1,3,7,1,1,7,1,1,1,9,1,29,1,3,1,1,1,31,15,1,87,3,1,1,1, %T A082553 115,1,1,1,257,1,1,1,17,1,1,1,3,21,1,1,519,23,141,1,3,1,847,1,19,1,1, %U A082553 1,215,1,1,27,1557,1,1,1,3,1,1,1,2617,1,1,3125,3,1,1 %N A082553 Number of sets of distinct positive integers whose geometric mean is an integer, the largest integer of a set is n. %C A082553 a(n) = 1 if and only if n is squarefree (i.e., if and only if n is in A005117). - _Nathaniel Johnston_, Apr 28 2011 %C A082553 If n has a prime divisor p > sqrt(n), then a(n) = a(n/p). - _Max Alekseyev_, Aug 27 2013 %H A082553 Jinyuan Wang, <a href="/A082553/b082553.txt">Table of n, a(n) for n = 1..134</a> %H A082553 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A082553 a(4) = 3: the three sets are {4}, {1, 4}, {1, 2, 4}. %t A082553 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&IntegerQ[GeometricMean[#]]&]],{n,15}] (* _Gus Wiseman_, Jul 19 2019 *) %o A082553 (PARI) { A082553(n) = my(m,c=0); if(issquarefree(n),return(1)); m = Set(vector(n-1,i,i)); forprime(p=sqrtint(n)+1,n, m = setminus(m,vector(n\p,i,p*i)); if(Mod(n,p)==0, return(A082553(n\p)) ); ); forvec(v=vector(#m,i,[0,1]), c += ispower(n*factorback(m,v),1+vecsum(v)) ); c; } \\ _Max Alekseyev_, Aug 31 2013 %o A082553 (Python) %o A082553 from sympy import factorint, factorial %o A082553 def make_product(p, n, k): %o A082553 ''' %o A082553 Find all k-element subsets of {1, ..., n} whose product is p. %o A082553 Returns: list of lists %o A082553 ''' %o A082553 if n**k < p: %o A082553 return [] %o A082553 if k == 1: %o A082553 return [[p]] %o A082553 if p%n == 0: %o A082553 l = [s + [n] for s in make_product(p//n, n - 1, k - 1)] %o A082553 else: %o A082553 l = [] %o A082553 return l + make_product(p, n - 1, k) %o A082553 def integral_geometric_mean(n): %o A082553 ''' %o A082553 Find all subsets of {1, ..., n} that contain n and whose %o A082553 geometric mean is an integer. %o A082553 ''' %o A082553 f = factorial(n) %o A082553 l = [[n]] %o A082553 #Find product of distinct prime factors of n %o A082553 c = 1 %o A082553 for p in factorint(n): %o A082553 c *= p %o A082553 #geometric mean must be a multiple of c %o A082553 for gm in range(c, n, c): %o A082553 k = 2 %o A082553 while not (gm**k%n == 0): %o A082553 k += 1 %o A082553 while gm**k <= f: %o A082553 l += [s + [n] for s in make_product(gm**k//n, n - 1, k - 1)] %o A082553 k += 1 %o A082553 return l %o A082553 def A082553(n): %o A082553 return len(integral_geometric_mean(n)) # _David Wasserman_, Aug 02 2019 %Y A082553 Subsets whose mean is an integer are A051293. %Y A082553 Partitions whose geometric mean is an integer are A067539. %Y A082553 Partial sums are A326027. %Y A082553 Strict partitions whose geometric mean is an integer are A326625. %Y A082553 Cf. A005117, A102627, A316413, A326623. %K A082553 nonn %O A082553 1,4 %A A082553 _Naohiro Nomoto_, May 03 2003 %E A082553 a(24)-a(62) from _Max Alekseyev_, Aug 31 2013 %E A082553 a(63)-a(99) from _David Wasserman_, Aug 02 2019