cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082560 a(1)=1, a(n)=2*a(n-1) if n is odd, or a(n)=a(n/2)+1 if n is even.

This page as a plain text file.
%I A082560 #13 May 14 2015 20:00:59
%S A082560 1,2,4,3,6,5,10,4,8,7,14,6,12,11,22,5,10,9,18,8,16,15,30,7,14,13,26,
%T A082560 12,24,23,46,6,12,11,22,10,20,19,38,9,18,17,34,16,32,31,62,8,16,15,30,
%U A082560 14,28,27,54,13,26,25,50,24,48,47,94,7,14,13,26,12,24,23,46,11,22,21,42,20
%N A082560 a(1)=1, a(n)=2*a(n-1) if n is odd, or a(n)=a(n/2)+1 if n is even.
%C A082560 b(1)=1, b(n)=2*b(n/2) if n is even, or b(n)=b(n-1)+1 if n is odd produces the sequence of natural numbers.
%C A082560 Seen as a triangle read by rows: T(1,1) = 1; T(n+1,2*k-1) = T(n,k)+1 and T(n+1,2*k) = 2*T(n,k)+2, 1 <= k <= 2^n. - _Reinhard Zumkeller_, May 13 2015
%H A082560 Reinhard Zumkeller, <a href="/A082560/b082560.txt">Rows n = 1..13 of triangle, flattened</a>
%F A082560 if n is in A010737 : a(n)=n-1
%e A082560 .  1:                                 1
%e A082560 .  2:                 2                                4
%e A082560 .  3:        3               6                5                10
%e A082560 .  4:    4       8       7       14       6       12       11       22
%e A082560 .  5:  5  10   9  18   8  16  15   30   7  14  13   26  12   24  23   46
%o A082560 (PARI) a(n)=if(n<2,1,if(n%2,2*a(n-1),1+a(n/2)))
%o A082560 (Haskell)
%o A082560 a082560 n k = a082560_tabf !! (n-1) !! (k-1)
%o A082560 a082560_row n = a082560_tabf !! (n-1)
%o A082560 a082560_tabf = iterate (concatMap (\x -> [x + 1, 2 * x + 2])) [1]
%o A082560 a082560_list = concat a082560_tabf
%o A082560 -- _Reinhard Zumkeller_, May 13 2015
%Y A082560 Cf. A000079 (row lengths), A033484 (right edges), A166060 (row sums), A232642 (duplicates removed).
%K A082560 nonn,tabf,look
%O A082560 1,2
%A A082560 _Benoit Cloitre_, May 04 2003