A082640 Triangle T(m,n) read by rows: unimodular triangulations of the grid P(m,n), m,n > 0, n <= m.
2, 6, 64, 20, 852, 46456, 70, 12170, 2822648, 736983568, 252, 182132, 182881520, 208902766788, 260420548144996, 924, 2801708, 12244184472, 61756221742966, 341816489625522032, 1999206934751133055518, 3432, 43936824, 839660660268, 18792896208387012, 464476385680935656240, 12169409954141988707186052, 332633840844113103751597995920
Offset: 1
Examples
Triangle begins: 2; 6, 64; 20, 852, 46456; 70, 12170, 2822648, 736983568; 252, 182132, 182881520, 208902766788, 260420548144996; ...
Links
- Stepan Orevkov, Table of n, a(n) for n = 1..55 (rows 1 to 10).
- V. Kaibel and G. M. Ziegler, Counting Lattice Triangulations, arXiv:math/0211268 [math.CO], 2002.
- S. Yu. Orevkov, Counting lattice triangulations: Fredholm equations in combinatorics, arXiv:2201.12827 [math.CO], 2022.
- S. Yu. Orevkov, Asymptotics of the number of lattice triangulations of rectangles of width 4 and 5, arXiv:2412.17065 [math.CO], 2024.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
Comments