cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082641 Triangle T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = number of basic invariants of degree k for the cyclic group of order and degree n.

This page as a plain text file.
%I A082641 #28 Nov 09 2018 20:27:46
%S A082641 1,1,1,1,1,2,1,2,2,2,1,2,4,4,4,1,3,6,6,2,2,1,3,8,12,12,6,6,1,4,10,18,
%T A082641 16,8,4,4,1,4,14,26,32,18,12,6,6,1,5,16,36,48,32,12,8,4,4,1,5,20,50,
%U A082641 82,70,50,30,20,10,10,1,6,24,64,104,84,36,20,12,8,4,4,1,6,28,84,168,180,132,84,60,36,24,12,12,1,7,32,104,216,242,162,96,42,30,18,12,6,6
%N A082641 Triangle T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = number of basic invariants of degree k for the cyclic group of order and degree n.
%C A082641 T(n,k) is also the number of multisets of k integers ranging from 1 to n, such that the sum of members of the multiset is congruent to 0 mod n, and no submultiset exists whose sum of members is congruent to 0 mod n. - _Andrew Weimholt_, Jan 31 2011
%D A082641 M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 208.
%D A082641 C. W. Strom, Complete systems of invariants of the cyclic groups of equal order and degree, Proc. Iowa Acad. Sci., 55 (1948), 287-290.
%H A082641 Finklea, Moore, Ponomarenko and Turner, <a href="http://www-rohan.sdsu.edu/~vadim/fmpt1b-revised.pdf">Invariant Polynomials and Minimal Zero Sequences</a>, Involve 1 (2008), no. 2, 159-165.
%H A082641 Bryson W. Finklea, Terri Moore, Vadim Ponomarenko and Zachary J. Turner, <a href="http://dx.doi.org/10.2140/involve.2008.1.159">Invariant polynomials and minimal zero sequences</a>, Involve, 1:2 (2008), pp. 159-165.
%H A082641 Vadim Ponomarenko, <a href="http://www-rohan.sdsu.edu/~vadim/Cyclic.xls">Table</a> (Excel spread-sheet format)
%H A082641 Vadim Ponomarenko, <a href="http://www-rohan.sdsu.edu/~vadim/mzs.zip">Programs</a>
%e A082641 Triangle with row sums (A002956):
%e A082641   Z_1:  1  ................................... 1
%e A082641   Z_2:  1  1  ................................ 2
%e A082641   Z_3:  1  1  2  ............................. 4
%e A082641   Z_4:  1  2  2  2  .......................... 7
%e A082641   Z_5:  1  2  4  4  4  ...................... 15
%e A082641   Z_6:  1  3  6  6  2  2  ................... 20
%e A082641   Z_7:  1  3  8 12 12  6  6  ................ 48
%e A082641   Z_8:  1  4 10 18 16  8  4  4  ............. 65
%e A082641   Z_9:  1  4 14 26 32 18 12  6  6  ......... 119
%e A082641   Z_10: 1  5 16 36 48 32 12  8  4  4  ...... 166
%e A082641   Z_11: 1  5 20 50 82 70 50 30 20 10 10  ... 348
%e A082641   ...
%Y A082641 Row sums give A002956.
%K A082641 nonn,tabl
%O A082641 1,6
%A A082641 _N. J. A. Sloane_, May 15 2003
%E A082641 More terms from Vadim Ponomarenko (vadim123(AT)gmail.com), Jun 29 2004