A082646 Primes whose decimal expansions contain equal numbers of each of their digits.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 317, 347, 349, 359, 367, 379, 389, 397, 401
Offset: 1
Examples
The prime 101 is not a term because it contains two 1's but only one 0. The prime 127 is a term because it has one 1, one 2 and one 7.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t={}; Do[p=Prime[n]; If[Length[DeleteDuplicates[Transpose[Tally[IntegerDigits[p]]][[2]]]]==1,AppendTo[t,p]],{n,79}]; t (* Jayanta Basu, May 10 2013 *)
-
Python
from sympy import prime A082646_list = [] for i in range(1,10**5): p = str(prime(i)) h = [p.count(d) for d in '0123456789' if d in p] if min(h) == max(h): A082646_list.append(int(p)) # Chai Wah Wu, Mar 06 2016
Comments