This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082648 #26 Mar 21 2021 03:33:34 %S A082648 3,1,3,0,4,9,0,2,4,0,2,9,8,2,5,6,3,3,2,4,4,6,5,5,2,5,0,9,3,0,5,0,1,3, %T A082648 9,5,3,2,3,4,0,8,4,9,9,7,0,1,1,2,6,8,3,7,4,8,6,8,7,4,9,7,4,7,4,2,2,9, %U A082648 0,0,4,3,3,0,5,6,5,8,6,5 %N A082648 Consider f(m) = Sum_{k=1..m} k! (A007489) when m is very large; a(n) = n-th digit from end. %C A082648 Apart from the first term, the same as A025016. - _R. J. Mathar_, Sep 17 2008 %C A082648 Since A007845 gives the smallest factorial having at least n trailing zeros, the first n digits read from the right are determined for m >= A007845(n) - 1. - _Martin Renner_, Feb 14 2021 %e A082648 Sum_{k=1..30} k! = 274410818470142134209703780940313. %e A082648 The last 7 digits in reverse order give us the first 7 terms of this sequence: 3,1,3,0,4,9,0. %e A082648 From _Jon E. Schoenfield_, Feb 16 2021: (Start) %e A082648 The table below shows the 12 least-significant digits of Sum_{k=1..m} k! converging to the first 12 terms of this sequence (in reverse order) as m increases: %e A082648 . %e A082648 m Sum_{k=1..m} k! # corresponding digits %e A082648 -- --------------- ---------------------- %e A082648 0 0 0 %e A082648 4 33 1 %e A082648 9 409113 2 %e A082648 14 93928268313 3 %e A082648 19 ...485935180313 4 %e A082648 24 ...567844940313 6 %e A082648 29 ...395300940313 7 %e A082648 34 ...323620940313 8 %e A082648 39 ...232420940313 9 %e A082648 44 ...080420940313 10 %e A082648 49 ...920420940313 12 %e A082648 ... %e A082648 oo ...920420940313 %e A082648 (End) %t A082648 Take[Reverse[IntegerDigits[Sum[n!, {n, 1, 500}]]], 100] (* generates first 100 terms *) %Y A082648 Cf. A007489, A003422, A007845, A045748. %K A082648 easy,base,nonn %O A082648 1,1 %A A082648 _Alexander Adamchuk_, May 15 2003