This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082652 #46 Jan 03 2025 09:37:26 %S A082652 1,2,5,3,8,14,4,11,20,30,5,14,26,40,55,6,17,32,50,70,91,7,20,38,60,85, %T A082652 112,140,8,23,44,70,100,133,168,204,9,26,50,80,115,154,196,240,285,10, %U A082652 29,56,90,130,175,224,276,330,385,11,32,62,100,145,196,252,312,375,440,506 %N A082652 Triangle read by rows: T(n,k) is the number of squares that can be found in a k X n rectangular grid of little squares, for 1 <= k <= n. %C A082652 Here the squares being counted have sides parallel to the gridlines; for all squares, see A130684. %C A082652 T(n,k) also is the total number of balls in a pyramid of balls on an n X k rectangular base. - _N. J. A. Sloane_, Nov 17 2007. For example, if the base is 4 X 2, the total number of balls is 4*2 + 3*1 = 11 = T(4,2). %C A082652 Row sums give A001296. - _Vincenzo Librandi_ Mar 26 2019 %H A082652 Robert Israel, <a href="/A082652/b082652.txt">Table of n, a(n) for n = 1..10011</a> %H A082652 Antonio Bernini, Matteo Cervetti, Luca Ferrari, and Einar Steingrimsson, <a href="https://arxiv.org/abs/1910.00299">Enumerative combinatorics of intervals in the Dyck pattern poset</a>, arXiv:1910.00299 [math.CO], 2019. See p. 5. %F A082652 T(n, k) = ( k + 3*k*n + 3*k^2*n - k^3 ) / 6. %F A082652 T(n, k) = Sum_{i=0..min(n,k)} (n-i)*(k-i). - _N. J. A. Sloane_, Nov 17 2007 %F A082652 G.f.: (1+x*y-2*x^2*y)*x*y/((1-x*y)^4*(1-x)^2). - _Robert Israel_, Dec 20 2017 %e A082652 Let X represent a small square. Then T(3,2) = 8 because here %e A082652 XXX %e A082652 XXX %e A082652 we can see 8 squares, 6 of side 1, 2 of side 2. %e A082652 Triangle begins: %e A082652 1 %e A082652 2 5 %e A082652 3 8 14 %e A082652 4 11 20 30 %e A082652 5 14 26 40 55 %e A082652 6 17 32 50 70 91 %e A082652 7 20 38 60 85 112 140 %e A082652 ... %p A082652 f:=proc(m,n) add((m-i)*(n-i),i=0..min(m,n)); end; %t A082652 T[n_, k_] := Sum[(n-i)(k-i), {i, 0, Min[n, k]}]; %t A082652 Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 25 2019 *) %o A082652 (Magma) /* As triangle */ [[(k+3*k*n+3*k^2*n-k^3)/6: k in [1..n]]: n in [1.. 15]]; // _Vincenzo Librandi_, Mar 26 2019 %Y A082652 Cf. A083003, A083487. Right side of triangle gives A000330. %Y A082652 Main diagonal is A000330, row sums are A001296. - _Paul D. Hanna_ and other correspondents, May 28 2003 %Y A082652 Cf. A130684. - _Joel B. Lewis_ %K A082652 nonn,tabl %O A082652 1,2 %A A082652 Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), May 16 2003 %E A082652 Edited by _Robert Israel_, Dec 20 2017