cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082660 Number of ways n can be expressed as the sum of a square and a triangular number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 0, 0, 3, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 2, 1, 0, 0, 1, 1, 4, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 1, 2, 0, 0, 4, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 3, 0, 1, 2, 0, 2, 0, 0, 0, 4, 2, 0, 2, 1, 1, 0, 0, 0, 2, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Jason Earls, May 17 2003

Keywords

Comments

It is assumed here that 0 is a square but not a triangular number. - Amiram Eldar, Dec 08 2019
The greedy inverse (positions of the first occurrence of n) is 1, 7, 10, 37, 136, 235, 1225, 631, 2116, 4789, 11026, 3997, 148240, 19045, 20827, 25876, ... - R. J. Mathar, Apr 28 2020

Examples

			a(631) = 8 because:
1. 631 = 6 + 625
2. 631 = 55 + 576
3. 631 = 190 + 441
4. 631 = 231 + 400
5. 631 = 406 + 225
6. 631 = 435 + 196
7. 631 = 595 + 36
8. 631 = 630 + 1
		

Crossrefs

Programs

  • Maple
    A082660 := proc(n)
        local a,tidx,t;
        a := 0 ;
        for tidx from 1 do
            t := A000217(tidx) ;
            if t > n then
                break;
            end if;
            if issqr(n-t) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    a[n_] := Length @ Solve[x^2 + y (y + 1)/2 == n && x >= 0 && y > 0, {x, y}, Integers]; Array[a, 100] (* Amiram Eldar, Dec 08 2019 *)

A082657 Integers expressible as the sum of a square and a triangular number in just one way.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 12, 14, 16, 17, 21, 24, 25, 29, 30, 32, 35, 36, 39, 42, 44, 49, 50, 51, 53, 54, 56, 57, 65, 66, 71, 72, 74, 75, 77, 78, 80, 81, 84, 95, 96, 101, 104, 105, 107, 110, 116, 117, 119, 120, 122, 126, 128, 129, 131, 137, 141, 149, 150, 152, 153, 156, 161
Offset: 1

Views

Author

Jason Earls, May 17 2003

Keywords

Comments

It is assumed here that 0 is a square but not a triangular number. - Amiram Eldar, Dec 08 2019

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Length @ Solve[x^2 + y (y + 1)/2 == n && x >= 0 && y > 0, {x, y}, Integers] == 1; Select[Range[161], aQ] (* Amiram Eldar, Dec 08 2019 *)

A082659 Integers expressible as the sum of a square and a triangular number in exactly three distinct ways.

Original entry on oeis.org

10, 19, 46, 64, 82, 109, 121, 127, 154, 169, 217, 253, 257, 262, 271, 316, 352, 361, 379, 397, 400, 451, 460, 478, 487, 496, 505, 514, 529, 586, 620, 640, 649, 667, 694, 721, 757, 767, 856, 865, 910, 937, 961, 964, 991, 1045, 1054, 1072, 1099, 1104, 1135, 1153
Offset: 1

Views

Author

Jason Earls, May 17 2003

Keywords

Comments

It is assumed here that 0 is a square but not a triangular number. - Amiram Eldar, Dec 08 2019

Examples

			a(5) = 82 because 82 = 1 + 81; 82 = 66 + 16; 82 = 78 + 4.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Length @ Solve[x^2 + y (y + 1)/2 == n && x >= 0 && y > 0, {x, y}, Integers] == 3; Select[Range[1200], aQ] (* Amiram Eldar, Dec 08 2019 *)

Extensions

Name clarified by Amiram Eldar, Dec 08 2019
Showing 1-3 of 3 results.