This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082687 #74 Feb 16 2025 08:32:49 %S A082687 1,7,37,533,1627,18107,237371,95549,1632341,155685007,156188887, %T A082687 3602044091,18051406831,7751493599,225175759291,13981692518567, %U A082687 14000078506967,98115155543129,3634060848592973,3637485804655193 %N A082687 Numerator of Sum_{k=1..n} 1/(n+k). %C A082687 Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - _Paul Barry_, Aug 19 2005 %C A082687 Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - _Alexander Adamchuk_, Apr 11 2006 %C A082687 Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - _Alexander Adamchuk_, Apr 11 2006 %C A082687 a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - _Alexander Adamchuk_, Jul 16 2006 %C A082687 Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - _Leroy Quet_, May 20 2007 %C A082687 Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - _Colin Barker_, Nov 19 2014 %C A082687 Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - _Peter Bala_, Feb 21 2017 %C A082687 From _Peter Bala_, Feb 16 2022: (Start) %C A082687 2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028. %C A082687 2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778. %C A082687 These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End) %H A082687 T. D. Noe, <a href="/A082687/b082687.txt">Table of n, a(n) for n = 1..100</a> %H A082687 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HilbertMatrix.html">Hilbert Matrix</a>. %F A082687 Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2). %F A082687 Numerator of Psi(2*n+1) - Psi(n+1). - _Vladeta Jovovic_, Aug 24 2003 %F A082687 a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - _Alexander Adamchuk_, Apr 11 2006 %F A082687 a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - _Alexander Adamchuk_, Apr 11 2006 %F A082687 The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)). %e A082687 H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805. %e A082687 n=2: HilbertMatrix(n,n) %e A082687 1 1/2 %e A082687 1/2 1/3 %e A082687 so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7. %e A082687 The n X n Hilbert matrix begins: %e A082687 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... %e A082687 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ... %e A082687 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ... %e A082687 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ... %e A082687 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ... %e A082687 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ... %p A082687 a := n -> numer(harmonic(2*n) - harmonic(n)): %p A082687 seq(a(n), n=1..20); # _Peter Luschny_, Nov 02 2017 %t A082687 Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* _Alexander Adamchuk_, Apr 11 2006 *) %t A082687 Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* _Alexander Adamchuk_, Apr 11 2006 *) %t A082687 Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* _Eric W. Weisstein_, Dec 14 2017 *) %o A082687 (PARI) a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ _Michel Marcus_, Dec 14 2017 %o A082687 (Magma) [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // _G. C. Greubel_, Jul 24 2023 %o A082687 (SageMath) [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # _G. C. Greubel_, Jul 24 2023 %Y A082687 Bisection of A058313, A082688 (denominators). %Y A082687 Cf. A001008, A002805, A005249, A007406, A058312. %Y A082687 Cf. A086881, A098118, A101028, A117731, A120778. %K A082687 frac,nonn,easy %O A082687 1,2 %A A082687 _Benoit Cloitre_, Apr 12 2003