A082743 a(0)=1, a(1)=2; for n >= 2, a(n) is smallest palindrome greater than 1 which is congruent to 1 (mod n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 55, 11, 111, 121, 66, 99, 121, 33, 171, 55, 77, 101, 22, 111, 323, 121, 101, 131, 55, 141, 88, 121, 373, 33, 232, 171, 141, 181, 1111, 77, 313, 121, 575, 505, 44, 353, 181, 323, 424, 1441, 99, 101, 868, 313, 10601, 55, 111, 393, 343, 929, 414
Offset: 0
Programs
-
Mathematica
f[n_] := Block[{k = 2}, While[ FromDigits[ Reverse[ IntegerDigits[k]]] != k || Mod[k, n] != 1, k++ ]; k]; Table[ f[n], {n, 2, 60}]
Formula
a(n) = A077528(n) for n >= 2. - Georg Fischer, Oct 06 2018
Extensions
Edited and extended by Robert G. Wilson v, Apr 19 2003