cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082769 a(n) = smallest palindromic prime that begins with A082768(n), or 0 if no such number exists.

Original entry on oeis.org

11, 3, 7, 919, 101, 11, 12421, 131, 14341, 151, 16061, 17471, 181, 191, 30103, 313, 32323, 33533, 34543, 353, 36263, 373, 383, 39293, 70207, 71317, 727, 73037, 74047, 757, 76367, 77377, 787, 797, 90709, 919, 929, 93139, 94049, 95959, 96269, 97379, 98389, 9902099, 1003001, 101, 1022201, 10301, 1043401, 10501, 10601, 1074701, 1082801, 1092901
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2003

Keywords

Comments

Conjecture: no entry is zero.

Crossrefs

Programs

  • Maple
    ispali := proc(n,b)
        local dgs,i ;
        dgs := convert(n,base,b) ;
        for i from 1 to nops(dgs)/2 do
            if op(i,dgs) <> op(-i,dgs) then
                return false;
            end if;
        end do:
        true;
    end proc:
    L082768 := [seq(A082768(n),n=1..200)] ; # use code in A082768
    L082769 := [seq(0,n=1..200)] ;
    for pi from 2 do
        p :=ithprime(pi) ;
        if ispali(p,10) then
            pdgs := convert(p,base,10) ;
            for sh from 0 do
                restp := add(op(i,pdgs)*10^(i-1),i=1..nops(pdgs)) ;
                for i from 1 to nops(L082768) do
                    if op(i,L082768) = restp then
                        if op(i,L082769) = 0 then
                            L082769 := subsop(i=p,L082769) ;
                            print(L082769) ;
                        end if;
                    end if;
                end do:
                # chop digits from palindromic prime starting at least signif
                pdgs := subsop(1=NULL,pdgs) ;
                if nops(pdgs) = 0 then
                    break ;
                end if;
            end do:
        end if;
    end do: # R. J. Mathar, Aug 27 2025

Extensions

More terms from David Wasserman, Jul 28 2005
12 more terms from R. J. Mathar, Aug 27 2025