This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082784 #48 Oct 31 2023 11:15:45 %S A082784 1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0, %T A082784 0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0, %U A082784 0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0 %N A082784 Characteristic function of multiples of 7. %C A082784 This sequence is the Euler transformation of A185017. - _Jason Kimberley_, Oct 14 2011 %H A082784 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>. %H A082784 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,1). %F A082784 a(n) = 0^(n mod 7). %F A082784 a(0)=1, a(n)=0 for 1<=n<7, a(n+7)=a(n). %F A082784 a(n) = 1 - (n^6 mod 7). - _Paolo P. Lava_, Oct 02 2006 %F A082784 a(n) = 1 - A109720(n); a(A008589(n)) = 1; a(A047304(n)) = 0. - _Reinhard Zumkeller_, Nov 30 2009 %F A082784 a(n) = floor(n/7)-floor((n-1)/7). - _Tani Akinari_, Oct 26 2012 %F A082784 a(n) = C(n-1,6) mod 7. - _Wesley Ivan Hurt_, Oct 07 2014 %F A082784 From _Wesley Ivan Hurt_, Jul 11 2016: (Start) %F A082784 G.f.: 1/(1-x^7). %F A082784 a(n) = a(n-7) for n>6. %F A082784 a(n) = (gcd(n,7) - 1)/6. (End) %e A082784 a(14) = a(2*7) = 1; a(41) = a(5*7+6) = 0. %p A082784 A082784:=n->0^(n mod 7): seq(A082784(n), n=0..100); # _Wesley Ivan Hurt_, Oct 07 2014 %t A082784 Table[Mod[Binomial[n - 1, 6], 7], {n, 0, 100}] (* _Wesley Ivan Hurt_, Oct 07 2014 *) %t A082784 Table[Boole[Divisible[n, 7]], {n, 0, 100}] (* _Amiram Eldar_, Oct 31 2023 *) %o A082784 (Haskell) %o A082784 a082784 = a000007 . (`mod` 7) %o A082784 a082784_list = cycle [1,0,0,0,0,0,0] %o A082784 -- _Reinhard Zumkeller_, Oct 27 2012 %o A082784 (PARI) a(n)=!(n%7) \\ _Charles R Greathouse IV_, Dec 03 2012 %o A082784 (Magma) [Binomial(n-1,6) mod 7 : n in [0..100]]; // _Wesley Ivan Hurt_, Oct 07 2014 %Y A082784 Cf. A008589, A076309. %Y A082784 Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), this sequence (g=7). - _Jason Kimberley_, Oct 14 2011 %Y A082784 Cf. A000007, A047304, A109720, A185017. %K A082784 nonn,easy %O A082784 0,1 %A A082784 _Reinhard Zumkeller_, May 22 2003 %E A082784 Wrong formula and keyword mult removed by _Amiram Eldar_, Oct 31 2023