cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082786 Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.

This page as a plain text file.
%I A082786 #57 Feb 16 2025 08:32:49
%S A082786 0,1,0,0,1,0,2,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,
%T A082786 0,0,0,2,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,
%U A082786 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0
%N A082786 Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.
%C A082786 n = Product_{k=1..n} prime(k)^T(n,k);
%C A082786 T(n, A055396(n)) > 0 and T(n,k) = 0 for 1 <= k < A055396(n);
%C A082786 T(n, A061395(n)) > 0 and T(n,k) = 0 for A061395(n) < k <= n;
%C A082786 Sum_{k=1..n} T(n,k) = A001222(n);
%C A082786 Sum_{k=1..n} A057427(T(n,k)) = A001221(n);
%C A082786 Sum_{k=1..n} T(n,k)*prime(k) = A001414(n);
%C A082786 Sum_{k=1..n} A057427(T(n,k))*prime(k) = A008472(n);
%C A082786 Min(T(n,k): 1<=k<=n) = A051904(n);
%C A082786 Max(T(n,k): 1<=k<=n) = A051903(n);
%C A082786 T(n,1) = A007814(n); T(n,2) = A007949(n), n>1.
%H A082786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization</a>
%e A082786 Triangle begins:
%e A082786   0,
%e A082786   1, 0,
%e A082786   0, 1, 0,
%e A082786   2, 0, 0, 0,
%e A082786   0, 0, 1, 0, 0,
%e A082786   1, 1, 0, 0, 0, 0,
%e A082786   0, 0, 0, 1, 0, 0, 0,
%e A082786   3, 0, 0, 0, 0, 0, 0, 0,
%e A082786   ...
%t A082786 Table[IntegerExponent[n, Prime[k]], {n,1,15}, {k,1,n}] // Flatten  (* _Amiram Eldar_, Dec 14 2018 *)
%o A082786 (PARI) row(n) = vector(n, k, valuation(n, prime(k)));
%o A082786 tabl(nn) = for (n=1, nn, print(row(n))); \\ _Michel Marcus_, Dec 14 2018
%Y A082786 Cf. A000040, A049084.
%Y A082786 Cf. A067255 (same as irregular triangle).
%K A082786 nonn,tabl
%O A082786 1,7
%A A082786 _Reinhard Zumkeller_, May 22 2003