cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082837 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 8 in base 10} 1/k.

This page as a plain text file.
%I A082837 #27 Feb 16 2025 08:32:49
%S A082837 2,2,7,2,6,3,6,5,4,0,2,6,7,9,3,7,0,6,0,2,8,3,3,6,4,4,1,5,6,7,4,2,5,5,
%T A082837 7,8,8,9,2,1,0,7,0,2,6,1,6,3,6,0,2,1,9,8,4,3,5,3,6,3,7,6,1,6,2,4,0,0,
%U A082837 4,6,8,2,0,1,7,5,1,3,4,8,1,2,7,0,1,0,5,6,2,1,6,5,1,5,8,9,2,2,4,7,7,5,7,9,3
%N A082837 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 8 in base 10} 1/k.
%C A082837 Numbers with a digit 8 (A011538) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - _M. F. Hasler_, Jan 13 2020
%D A082837 Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
%H A082837 Robert Baillie, <a href="https://www.jstor.org/stable/2321096">Sums of reciprocals of integers missing a given digit</a>, Amer. Math. Monthly, 86 (1979), 372-374.
%H A082837 Robert Baillie, <a href="https://arxiv.org/abs/0806.4410">Summing the curious series of Kempner and Irwin</a>, arXiv:0806.4410 [math.CA], 2008-2015.
%H A082837 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KempnerSeries.html">Kempner Series</a>.
%H A082837 Wikipedia, <a href="http://en.wikipedia.org/wiki/Kempner_series">Kempner series</a>.
%H A082837 Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, <a href="http://library.wolfram.com/infocenter/MathSource/7166/"> Summing Kempner's Curious (Slowly-Convergent) Series</a>.
%F A082837 Equals Sum_{k in A052421\{0}} 1/k, where A052421 = numbers with no digit 8. - _M. F. Hasler_, Jan 14 2020
%e A082837 22.726365402679370602833644156742557889210702616360219843536376162... - _Robert G. Wilson v_, Jun 01 2009
%t A082837 (* see the Mmca in Wolfram Library Archive. - _Robert G. Wilson v_, Jun 01 2009 *)
%Y A082837 Cf. A002387, A024101, A052421 (numbers with no '8'), A011538 (numbers with a '8').
%Y A082837 Cf. A082830, A082831, A082832, A082833, A082834, A082835, A082836, A082838, A082839 (analog for digits 1, 2, 3, ..., 9 and 0).
%K A082837 nonn,cons,base
%O A082837 2,1
%A A082837 _Robert G. Wilson v_, Apr 14 2003
%E A082837 More terms and links from _Robert G. Wilson v_, Jun 01 2009
%E A082837 Minor edits by _M. F. Hasler_, Jan 13 2020