A082839 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 0 in base 10} 1/k.
2, 3, 1, 0, 3, 4, 4, 7, 9, 0, 9, 4, 2, 0, 5, 4, 1, 6, 1, 6, 0, 3, 4, 0, 5, 4, 0, 4, 3, 3, 2, 5, 5, 9, 8, 1, 3, 8, 3, 0, 2, 8, 0, 0, 0, 0, 5, 2, 8, 2, 1, 4, 1, 8, 8, 6, 7, 2, 3, 0, 9, 4, 7, 7, 2, 7, 3, 8, 7, 5, 0, 7, 9, 6, 0, 6, 1, 4, 1, 9, 4, 2, 6, 3, 5, 9, 2, 0, 1, 9, 1, 0, 5, 2, 6, 1, 3, 9, 3, 3, 8, 6, 5, 2, 1
Offset: 2
Examples
23.10344790942054161603...
References
- Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.
- Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, p. 34.
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997.
Links
- Robert Baillie, Sums of reciprocals of integers missing a given digit, Amer. Math. Monthly, 86 (1979), 372-374.
- Robert Baillie, Summing The Curious Series Of Kempner And Irwin, arXiv:0806.4410 [math.CA], 2008-2015. [_Robert G. Wilson v_, Jun 01 2009]
- Frank Irwin, A Curious Convergent Series, Amer. Math. Monthly, 23 (1916), 149-152.
- A. D. Wadhwa, An interesting subseries of the harmonic series, Amer. Math. Monthly, 78 (1975), 931-933.
- A. D. Wadhwa, Some convergent subseries of the harmonic series, Amer. Math. Monthly, 85 (1978), 661-663.
- Eric Weisstein's World of Mathematics, Kempner Series.
- Wikipedia, Kempner series
- Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, Summing Kempner's Curious (Slowly-Convergent) Series [_Robert G. Wilson v_, Jun 01 2009]
Crossrefs
Programs
-
Mathematica
(* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)
Extensions
More terms from Robert G. Wilson v, Jun 01 2009
Comments