This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082841 #50 Oct 11 2022 00:59:41 %S A082841 3,9,33,123,459,1713,6393,23859,89043,332313,1240209,4628523,17273883, %T A082841 64467009,240594153,897909603,3351044259,12506267433,46674025473, %U A082841 174189834459,650085312363,2426151414993,9054520347609,33791929975443 %N A082841 a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9. %C A082841 y-values in the solutions to 3*x^2+6 = y^2. - _Sture Sjöstedt_, Nov 25 2011 %C A082841 Positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 18 = 0. - _Colin Barker_, Feb 04 2014 %C A082841 Positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 288 = 0. - _Colin Barker_, Feb 16 2014 %H A082841 Vincenzo Librandi, <a href="/A082841/b082841.txt">Table of n, a(n) for n = 0..200</a> %H A082841 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A082841 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1). %F A082841 G.f.: (3 -6*x +3*x^2)/((1-x)*(1-4*x+x^2)). %F A082841 a(n) = sqrt(3/2)*(a^(n+1/2) + b^(n+1/2)), with a=2+sqrt(3) and b=2-sqrt(3). %F A082841 a(n) = sqrt(3*(11 +12*A082840(n) +4*A082840(n)^2)). %F A082841 a(n) = sqrt((3/2)*(A003500(2n+1) +2)). %F A082841 a(n) - a(n-1) = 6*A001353(n). %F A082841 a(n) == 3 (mod 6). %F A082841 a(n) = 3 * A001835(n+1). %F A082841 a(n) = 3*x(n) + 3*y(n) for x(n)= A001075(n) and y(n) = A001353(n) the solutions to x^2 - 3*y^2 = 1. - _Greg Dresden_ and his Math 222 Linear Algebra class, Oct 05 2022 %p A082841 a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # _Wesley Ivan Hurt_, Jan 21 2017 %t A082841 CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x] %t A082841 LinearRecurrence[{4,-1},{3,9},30] (* _Harvey P. Dale_, Aug 28 2019 *) %o A082841 (PARI) my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ _G. C. Greubel_, Feb 25 2019 %o A082841 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // _G. C. Greubel_, Feb 25 2019 %o A082841 (Sage) ((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 25 2019 %o A082841 (GAP) a:=[3,9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Feb 25 2019 %Y A082841 First differences of A005320. %Y A082841 Cf. A001834. %K A082841 nonn,easy %O A082841 0,1 %A A082841 Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003