This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082870 #18 Nov 27 2016 22:10:32 %S A082870 1,1,1,1,1,2,1,1,3,3,1,4,6,2,1,5,10,7,1,1,6,15,16,6,1,7,21,30,19,3,1, %T A082870 8,28,50,45,16,1,1,9,36,77,90,51,10,1,10,45,112,161,126,45,4,1,11,55, %U A082870 156,266,266,141,30,1,1,12,66,210,414,504,357,126,15,1,13,78,275,615,882 %N A082870 Tribonacci array. %C A082870 Row sums are tribonacci numbers. %C A082870 From _Gary W. Adamson_, Nov 15 2016: (Start) %C A082870 With an alternative format: %C A082870 1, 0, 0, 0, 0, 0, 0, ... %C A082870 1, 1, 1, 0, 0, 0, 0, ... %C A082870 1, 2, 3, 2, 1, 0, 0, ... %C A082870 1, 3, 6, 7, 6, 3, 1, ... %C A082870 ... (where the k-th row is (1 + x + x^2)^k), let q(x) = (r(x) * r(x^3) * r(x^9) * r(x^27) * ...). Then q(x) is the binomial sequence beginning (1, k, ...). Example: (1, 3, 6, 10, ...) = q(x) with r(x) = (1, 3, 6, 7, 3, 1, 0, 0, 0). (End) %D A082870 Thomas Koshy, <"Fibonacci and Lucas Numbers with Applications">, Wiley, 2001; Chapter 47: Tribonacci Polynomials: ("In 1973, V.E. Hoggat, Jr. and M. Bicknell generalized Fibonacci polynomials to Tribonacci polynomials tx(x)"); Table 47.1, page 534: "Tribonacci Array". %H A082870 Reinhard Zumkeller, <a href="/A082870/b082870.txt">Rows n = 0..150 of triangle, flattened</a> %F A082870 G.f.: x/(1 - x - x^2*y - x^3*y^2). - _Vladeta Jovovic_, May 30 2003 %e A082870 Triangle begins: %e A082870 1, %e A082870 1, %e A082870 1, 1, %e A082870 1, 2, 1, %e A082870 1, 3, 3, %e A082870 1, 4, 6, 2, %e A082870 1, 5, 10, 7, 1, %e A082870 1, 6, 15, 16, 6, %o A082870 (Haskell) %o A082870 a082870 n k = a082870_tabf !! n !! k %o A082870 a082870_row n = a082870_tabf !! n %o A082870 a082870_tabf = map (takeWhile (> 0)) a082601_tabl %o A082870 -- _Reinhard Zumkeller_, Apr 13 2014 %Y A082870 A082601 is a better version. Cf. A000073, A078802. %Y A082870 Cf. A004396 (row lengths). %K A082870 nonn,tabf %O A082870 0,6 %A A082870 _Gary W. Adamson_, May 24 2003 %E A082870 More terms from _Vladeta Jovovic_, May 30 2003