This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082872 #26 Dec 15 2017 17:36:11 %S A082872 1,4,27,32,3125,793,823543,768,39366,9766649,285311670611,539633, %T A082872 302875106592253,678223089233,30531927032,262144, %U A082872 827240261886336764177,775103122,1978419655660313589123979,95367433737777,558545874543637210 %N A082872 a^n + b^n + c^n + ..., where a*b*c* ... is the prime factorization of n. %C A082872 n*log_10(2) + log_10(log_2(n)) <= length(a(n)) <= n*log_10(n). - Martin Renner, Jan 18 2012 %C A082872 If m = p^k is a power of a prime then a(n) = sum(p^m,i=1..k) = k*p^m is composite. - Martin Renner, Jan 31 2013 %H A082872 T. D. Noe, <a href="/A082872/b082872.txt">Table of n, a(n) for n = 1..100</a> %e A082872 a(6) = a(2*3) = 2^6 + 3^6 = 793. %e A082872 a(8) = a(2*2*2) = 2^8 + 2^8 + 2^8 = 768. %p A082872 A082872 := proc(n) %p A082872 local ps; %p A082872 if n= 1 then %p A082872 1; %p A082872 else %p A082872 ps := ifactors(n)[2] ; %p A082872 add( op(2,p)*op(1,p)^n,p=ps) ; %p A082872 end if; %p A082872 end proc: # _R. J. Mathar_, Mar 12 2014 %t A082872 Table[f = FactorInteger[n]; Total[Flatten[Table[Table[f[[i, 1]], {f[[i, 2]]}], {i, Length[f]}]]^n], {n, 25}] (* _T. D. Noe_, Feb 01 2013 *) %t A082872 Table[Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]^n],{n,30}] (* _Harvey P. Dale_, Jun 10 2016 *) %Y A082872 Cf. A082813, A082814, A051674. %K A082872 nonn,easy %O A082872 1,2 %A A082872 _Jason Earls_, May 25 2003