A082882 Number of distinct values of A075860(j) when j runs through composite numbers between n-th and (n+1)-th primes. That is, the counts of different fixed-points[=prime] reached by iteration of function A008472(=sum of prime factors) initiated with composite values between two consecutive primes.
0, 1, 1, 3, 1, 2, 1, 2, 3, 1, 4, 2, 1, 3, 3, 5, 1, 4, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 8, 3, 2, 1, 6, 1, 2, 3, 3, 3, 5, 1, 5, 1, 2, 1, 7, 4, 2, 1, 2, 4, 1, 5, 3, 4, 4, 1, 5, 3, 1, 6, 6, 2, 1, 2, 7, 3, 4, 1, 3, 4, 6, 3, 3, 3, 4, 6, 3, 5, 5, 1, 6, 1, 3, 3, 4, 5, 1, 1, 2, 6, 4, 3, 4, 3, 2, 6, 1, 8, 3, 6, 4, 5, 1, 4
Offset: 1
Keywords
Examples
Between p(23)=83 and p(24)=89, the relevant fixed points are {5,13,2,2,13}, i.e., four are distinct from the 5 values, a(24)=4; between p(2033)=17707 and p(2034)=170713, the fixed-point set is {5,5,5,5,5}, so a(2033)=1, so a(88)=1.
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Table[Length[Union[Table[FixedPoint[sopf, w], {w, 1+Prime[n], Prime[n+1]-1}]]], {n, 1, 1000}]
Formula
a(n) = Card(Union(A075860(x)); x=1+p(n), ..., -1+p(n+1)).
Comments