This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082886 #6 Sep 04 2015 10:44:23 %S A082886 1,1,1,2,0,1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0,0,0,2,0,1,0,2, %T A082886 0,1,1,0,1,1,0,1,0,0,0,2,2,0,0,0,1,0,1,1,1,1,0,1,0,0,1,2,0,0,0,2,1,1, %U A082886 0,0,1,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,0,2,0,1,0,0,0,0 %N A082886 floor((prime(n+1)-prime(n))/log(prime(n))). %C A082886 a(n) is unbounded by a theorem of Westzynthius. - _Charles R Greathouse IV_, Sep 04 2015 %H A082886 Kevin Ford, Ben Green, Sergei Konyagin, James Maynard, and Terence Tao, <a href="http://arxiv.org/abs/1412.5029">Long gaps between primes</a> (2014). %F A082886 a(n)=floor((prime(n+1)-prime(n))/log(prime(n))). %F A082886 a(n)=Floor(A001223(n)/log(A000040(n))). %F A082886 Infinitely often a(n) >> log log n log log log log n/log log log n, see Ford-Green-Konyagin-Maynard-Tao. - _Charles R Greathouse IV_, Sep 04 2015 %e A082886 a(217) = floor((1361-1327)/log(1327)) = floor(4.72834...) = 4. %t A082886 Table[Floor[(Prime[n+1]-Prime[n])/Log[Prime[n]]//N], {n, 1, 220}] %o A082886 (PARI) a(n,p=prime(n))=(nextprime(p+1)-p)\log(p) \\ _Charles R Greathouse IV_, Sep 04 2015 %Y A082886 Cf. A082862, A082884, A082885, A082888-A082891. %K A082886 nonn %O A082886 1,4 %A A082886 _Labos Elemer_, Apr 17 2003