cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A082891 Smallest prime p such that q = (r-p)/log(p) > n, where r is the next prime after p.

Original entry on oeis.org

2, 7, 1129, 1327, 19609, 31397, 155921, 370261, 1357201, 2010733, 20831323, 20831323, 191912783, 436273009, 3842610773, 10726904659, 25056082087, 25056082087, 25056082087, 1346294310749, 1408695493609, 2614941710599, 13829048559701, 19581334192423, 19581334192423
Offset: 1

Views

Author

Labos Elemer, Apr 17 2003

Keywords

Comments

Is lim superior(q(n)) = +infinity? See A082892.

Examples

			For n = 11 and 12: k = 1319945: p(k+1) = 20831533, p(k) = 20831323, d = p(k+1) - p(k) = 210, log(20831321) = 16.852..., q = 210/16.852... = 12.4615... > 12 and also > 11 for the first time, so a(11) = a(12) = 20831323.
		

Crossrefs

Programs

  • Mathematica
    Do[s=(Prime[n+1]-Prime[n])/Log[Prime[n]]//N; If[s>11, Print[{n, Prime[n], Prime[n+1], s, Log[Prime[n]]//N}]], {n, 1000000, 100000000}]
  • PARI
    lista(pmax) = {my(n = 1, prv = 2, d, m); print1(2, ", "); forprime(p=3, pmax, d = p-prv; m = floor(d/log(prv)); if(m > n, for(k = 1, m-n, print1(prv, ", ")); n = m); prv=p);} \\ Amiram Eldar, Nov 04 2024

Formula

a(n)= Min{p(x); (p(x+1)-p(x))/log(p(x)) > n}.

Extensions

a(10) corrected and a(13)-a(25) added by Amiram Eldar, Nov 04 2024
Showing 1-1 of 1 results.