cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082903 Highest power of two that divides the sum of divisors of n.

This page as a plain text file.
%I A082903 #51 Jul 02 2022 13:15:10
%S A082903 1,1,4,1,2,4,8,1,1,2,4,4,2,8,8,1,2,1,4,2,32,4,8,4,1,2,8,8,2,8,32,1,16,
%T A082903 2,16,1,2,4,8,2,2,32,4,4,2,8,16,4,1,1,8,2,2,8,8,8,16,2,4,8,2,32,8,1,4,
%U A082903 16,4,2,32,16,8,1,2,2,4,4,32,8,16,2,1,2,4,32,4,4,8,4,2,2,16,8,128,16,8,4,2
%N A082903 Highest power of two that divides the sum of divisors of n.
%C A082903 a(n) = gcd(2^n, sigma_1(n)) = gcd(A000079(n), A000203(n)) also a(n) = gcd(2^n, sigma_3(n)) = gcd(A000079(n), A001158(n)). (The original, equivalent definition for this sequence).
%C A082903 a(n) = gcd(2^n, sigma_k(n)) when k is an odd positive integer. Proof: It suffices to show that v_2(sigma_k(n)) does not depend on k, where v_2(n) is the 2-adic valuation of n. Since v_2(ab) = v_2(a)+v_2(b) and sigma_k(n) is an arithmetic function, we need only prove it for n=p^e with p prime. If p is 2 or e is even, sigma_k(p^e) is odd, so we can disregard those cases. Otherwise, we sum the geometric series to obtain v_2(sigma_k(p^e)) = v_2(p^(k(e+1))-1)-v_2(p-1). Applying the well-known LTE Lemma (see Hossein link) Case 4 arrives at v_2(p^(k(e+1))-1)-v_2(p-1) = v_2(p+1)+v_2(k(e+1))-1. But v_2(k(e+1)) = v_2(k)+v_2(e+1), and k is odd, so we conclude that v_2(sigma_k(p^e)) = v_2(p+1)+v_2(e+1)-1, a result independent of k. - _Rafay A. Ashary_, Oct 15 2016
%C A082903 Also the highest power of two that divides the sum of odd divisors of n. - _Antti Karttunen_, Mar 27 2022
%H A082903 Robert Israel, <a href="/A082903/b082903.txt">Table of n, a(n) for n = 1..10000</a>
%H A082903 Amir Hossein, <a href="http://www.artofproblemsolving.com/community/c6h393335">Lifting The Exponent Lemma (Containing PDF file)</a>
%H A082903 Jon Maiga, <a href="http://sequencedb.net/s/A082903">Computer-generated formulas for A082903</a>, Sequence Machine.
%F A082903 From _Antti Karttunen_, Mar 27 2022: (Start)
%F A082903 (Some of these formulas were found by Sequence Machine.)
%F A082903 a(n) = a(A000265(n)) = a(2*n).
%F A082903 a(n) = A006519(A000593(n)) = A006519(A000203(n)) = A000203(n) / A161942(n).
%F A082903 a(n) = 2^(A286357(n)-1).
%F A082903 (End)
%F A082903 a(n) = 2^A336937(n). - _Chai Wah Wu_, Jul 02 2022
%p A082903 seq(2^min(n, padic:-ordp(numtheory:-sigma(n),2)), n=1..100); # _Robert Israel_, Oct 23 2016
%t A082903 Array[2^IntegerExponent[DivisorSigma[1, #], 2] &, 97] (* _Michael De Vlieger_, Apr 03 2022 *)
%o A082903 (PARI) a(n) = gcd(2^n, sigma(n)); \\ _Michel Marcus_, Oct 15 2016
%o A082903 (PARI) A082903(n) = (2^valuation(sigma(n), 2)); \\ _Antti Karttunen_, Mar 27 2022
%o A082903 (Python)
%o A082903 from sympy import divisor_sigma
%o A082903 def A082903(n): return 1<<(~(m:=int(divisor_sigma(n))) & m-1).bit_length() # _Chai Wah Wu_, Jul 02 2022
%Y A082903 Cf. A000203, A000265, A000593, A001157, A001158, A006519, A007814, A082902, A161942, A286357.
%Y A082903 Cf. A028982 (positions of 1's).
%K A082903 nonn,mult
%O A082903 1,3
%A A082903 _Labos Elemer_, Apr 22 2003
%E A082903 Name replaced with a simpler one and the original definition moved to the Comments section by _Antti Karttunen_, Apr 03 2022