This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082907 #26 Dec 25 2016 02:13:51 %S A082907 1,1,1,1,2,1,1,1,1,1,1,4,2,4,1,1,1,2,2,1,1,1,2,1,4,1,2,1,1,1,1,1,1,1, %T A082907 1,1,1,8,4,8,2,8,4,8,1,1,1,4,4,2,2,4,4,1,1,1,2,1,8,2,4,2,8,1,2,1,1,1, %U A082907 1,1,2,2,2,2,1,1,1,1,1,4,2,4,1,8,4,8,1,4,2,4,1,1,1,2,2,1,1,4,4,1,1,2,2,1,1 %N A082907 A modified Pascal's triangle, read by rows, and modified as follows: binomial(n,j) is replaced by gcd(2^n, binomial(n,j)), i.e., the largest power of 2 dividing binomial(n,j). %C A082907 If N is a power of 2, then the first N rows are invariant under all 6 symmetries of an equilateral triangle. - _Paul Boddington_, Dec 17 2003 %H A082907 G. C. Greubel, <a href="/A082907/b082907.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A082907 Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143. %H A082907 E. Burlachenko, <a href="https://arxiv.org/abs/1612.00970">Fractal generalized Pascal matrices</a>, arXiv:1612.00970 [math.NT], 2016. See p. 5. %H A082907 Tom Edgar and Michael Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Edgar/edgar3.html">Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. %F A082907 From _Paul Boddington_, Dec 17 2003: (Start) %F A082907 T(n, j) = c(n)/(c(j)*c(n-j)) where c(n)=A060818(n). %F A082907 T(n, j) = (b(j)*b(n-j))/b(n) where b(n)=A001316(n) (Gould's sequence). (End) %e A082907 Triangle read by rows: %e A082907 1, %e A082907 1,1, %e A082907 1,2,1, %e A082907 1,1,1,1, %e A082907 1,4,2,4,1, %e A082907 1,1,2,2,1,1, %e A082907 1,2,1,4,1,2,1, %e A082907 1,1,1,1,1,1,1,1, %e A082907 1,8,4,8,2,8,4,8,1, %e A082907 1,1,4,4,2,2,4,4,1,1, %e A082907 ... %e A082907 For n = -1 + 2^k, such rows consist of all 1's since all binomial coefficients C(n,j) are odd. %t A082907 Flatten[Table[Table[GCD[2^n, Binomial[n, j]], {j, 0, n}], {n, 0, 25}], 1] %t A082907 f[n_] := Denominator[CatalanNumber[n - 1]/2^(n - 1)]; T[n_, k_] := f[n]/(f[k]*f[n - k]); Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Dec 24 2016 *) %Y A082907 Cf. A000005, A000079, A001316, A007318, A060818. %K A082907 nonn,tabl %O A082907 0,5 %A A082907 _Labos Elemer_, Apr 23 2003 %E A082907 Edited by _Jon E. Schoenfield_, Dec 24 2016