A082912 Least k such that H(k) > 10^n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.
2, 12367, 15092688622113788323693563264538101449859497
Offset: 0
References
- Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 23.
Links
- R. Baillie, Fun With Very Large Numbers, arXiv preprint arXiv:1105.3943, 2011
- R. P. Boas, Jr. and J. W. Wrench, Jr., Partial sums of the harmonic series, Amer. Math. Monthly, 78 (1971), 864-870.
- Eric Weisstein's World of Mathematics, Harmonic Number
- Lin Zhang, A Likelihood Ratio Test of Independence of Components for High-dimensional Normal Vectors, MS Thesis, Univ. Minnesota, 2013.
Programs
-
Mathematica
f[n_] := Floor[Exp[n - EulerGamma] - 1/2] + 1; Table[ f[10^n], {n, 0, 2}]
Formula
H(k) ~= log(k) + Euler's Gamma Constant (A001620) + 1/(2k).
a(n) = A002387(10^n). - Joerg Arndt, Jul 13 2015
Comments