This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082916 #27 Jun 28 2025 11:15:02 %S A082916 0,1,3,5,7,9,11,13,17,19,23,25,27,29,31,37,39,41,43,47,49,53,55,59,61, %T A082916 67,71,73,79,81,83,89,93,97,101,103,107,109,111,113,119,121,125,127, %U A082916 131,137,139,149,151,155,157,161,163,167,169,173,179,181,185,191,193,197 %N A082916 Numbers k such that k and binomial(2*k, k) are relatively prime. %C A082916 Also the numbers k such that every base-p digit of k is less than p/2, for every prime divisor p of k. Contains all odd primes and their powers. - _David Radcliffe_, Jun 28 2025 %D A082916 J. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly J. of Pure and Applied Math. 30 (1899), 150-156. %H A082916 Chai Wah Wu, <a href="/A082916/b082916.txt">Table of n, a(n) for n = 1..10000</a> %F A082916 It seems that a(n) is asymptotic to c*n*log(n) with 0.7<c<0.8. %t A082916 Select[Range[0, 100], CoprimeQ[Binomial[2*#, #], #] &] (* _Amiram Eldar_, May 24 2020 *) %o A082916 (PARI) isok(n) = gcd(n, binomial(2*n, n)) == 1; \\ _Michel Marcus_, Dec 04 2013 %o A082916 (Python) %o A082916 from math import gcd %o A082916 A082916_list, b = [], 1 %o A082916 for n in range(10**5): %o A082916 if gcd(n,b) == 1: %o A082916 A082916_list.append(n) %o A082916 b = b*(4*n+2)//(n+1) # _Chai Wah Wu_, Mar 25 2016 %Y A082916 Cf. A000984 (central binomial coefficients). Contains A061345. %K A082916 nonn %O A082916 1,3 %A A082916 _Benoit Cloitre_, May 25 2003