cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082935 Smallest palindrome beginning with n and a digit sum of n at some stage.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10801, 11711, 12621, 13531, 14441, 15351, 16261, 17171, 1881, 1949999999999999999999491, 208802, 2139312, 227722, 2329232, 246642, 2519152, 265562, 27972, 28882, 29792, 3088803, 3179713, 3278723, 3369633, 3468643
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 16 2003

Keywords

Comments

In most cases (perhaps in all other) except for n = 19 the digit sum in the first round itself is n. In case of 19 the first round of digit sum is 199 and the second round digit sum is 19.
Checked the conjecture above to n=100. - Robert G. Wilson v

Examples

			a(19)=1949999999999999999999491. The smallest such number is 194 followed by 19 nines followed by 491. The first digit sum would be 199 and the next sum is 19.
		

Crossrefs

Cf. A082217.

Programs

  • Mathematica
    (*This code works for all numbers up to 100 except 19*) NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1;
    idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; f[n_] := Block[{k = 1, dn = IntegerDigits[n]}, sdn = 2*Plus @@ dn; If[sdn == 2n, n, If[sdn == n, FromDigits[ Join[dn, Reverse[dn]]], If[sdn > n, 0, k = 10^Floor[(n - sdn)/9] - 1;; While[Plus @@ IntegerDigits[k] + sdn != n, k = NextPalindrome[k]]; FromDigits[ Join[dn, IntegerDigits[k], Reverse[dn]]]]]]]; Table[ f[n], {n, 1, 35}]

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 27 2003