A082935 Smallest palindrome beginning with n and a digit sum of n at some stage.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10801, 11711, 12621, 13531, 14441, 15351, 16261, 17171, 1881, 1949999999999999999999491, 208802, 2139312, 227722, 2329232, 246642, 2519152, 265562, 27972, 28882, 29792, 3088803, 3179713, 3278723, 3369633, 3468643
Offset: 1
Examples
a(19)=1949999999999999999999491. The smallest such number is 194 followed by 19 nines followed by 491. The first digit sum would be 199 and the next sum is 19.
Crossrefs
Cf. A082217.
Programs
-
Mathematica
(*This code works for all numbers up to 100 except 19*) NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; f[n_] := Block[{k = 1, dn = IntegerDigits[n]}, sdn = 2*Plus @@ dn; If[sdn == 2n, n, If[sdn == n, FromDigits[ Join[dn, Reverse[dn]]], If[sdn > n, 0, k = 10^Floor[(n - sdn)/9] - 1;; While[Plus @@ IntegerDigits[k] + sdn != n, k = NextPalindrome[k]]; FromDigits[ Join[dn, IntegerDigits[k], Reverse[dn]]]]]]]; Table[ f[n], {n, 1, 35}]
Extensions
Edited, corrected and extended by Robert G. Wilson v, Jun 27 2003
Comments