A082939 Numbers such that sum of the digits of the product of the factorial of digits of the number is equal to the sum of the digits of the number.
1, 2, 10, 18, 20, 22, 27, 36, 63, 72, 81, 100, 108, 114, 117, 126, 135, 141, 153, 162, 171, 180, 200, 202, 207, 216, 220, 261, 270, 306, 315, 333, 351, 360, 411, 513, 531, 603, 612, 621, 630, 702, 711, 720, 801, 810, 1000, 1008, 1014, 1017, 1026, 1035, 1041
Offset: 1
Examples
63 = 6!*3! = 720*6 = 4320, 4 + 3 + 2 + 0 = 9 and 6 + 3 = 9.
References
- Suggested by Amarnath Murthy.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Python
from math import factorial, prod def ok(n): d = list(map(int, str(n))) return sum(map(int, str(prod(map(factorial, d))))) == sum(d) print([k for k in range(1042) if ok(k)]) # Michael S. Branicky, Aug 15 2022
Extensions
Corrected and extended by Jason Earls, May 22 2004