cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082939 Numbers such that sum of the digits of the product of the factorial of digits of the number is equal to the sum of the digits of the number.

Original entry on oeis.org

1, 2, 10, 18, 20, 22, 27, 36, 63, 72, 81, 100, 108, 114, 117, 126, 135, 141, 153, 162, 171, 180, 200, 202, 207, 216, 220, 261, 270, 306, 315, 333, 351, 360, 411, 513, 531, 603, 612, 621, 630, 702, 711, 720, 801, 810, 1000, 1008, 1014, 1017, 1026, 1035, 1041
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 27 2003

Keywords

Examples

			63 = 6!*3! = 720*6 = 4320, 4 + 3 + 2 + 0 = 9 and 6 + 3 = 9.
		

References

Crossrefs

Programs

  • Python
    from math import factorial, prod
    def ok(n):
        d = list(map(int, str(n)))
        return sum(map(int, str(prod(map(factorial, d))))) == sum(d)
    print([k for k in range(1042) if ok(k)]) # Michael S. Branicky, Aug 15 2022

Formula

Numbers k such that A007953(k) = A007953(A066459(k)).

Extensions

Corrected and extended by Jason Earls, May 22 2004

A082941 a(n) is the odd-length palindrome whose digits up to the center are those of n and whose center digit is equal to the digital root of the product of the factorial of n and the reverse of n.

Original entry on oeis.org

111, 242, 393, 494, 595, 696, 797, 898, 999, 10901, 11911, 12921, 13931, 14941, 15951, 16961, 17971, 18981, 19991, 20902, 21912, 22922, 23932, 24942, 25952, 26962, 27972, 28982, 29992, 30903, 31913, 32923, 33933, 34943, 35953, 36963, 37973, 38983, 39993, 40904, 41914, 42924, 43934, 44944
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 30 2003

Keywords

Comments

Center digit is 9 from the third term onwards.

Examples

			a(9) = 9!*9! = 362880*362880 = 131681894400. 1+3+1+6+8+1+8+9+4+4+0+0 = 45. 4+5 = 9.
a(6) = 6!*6! = 518400. 5+1+8+4+0+0 = 18. 1+8 = 9.
		

Crossrefs

Cf. A082940.
Subsequence of A002113.

Programs

  • Mathematica
    DeleteCases[ParallelTable[If[OddQ[Length[IntegerDigits[n]]]&&PalindromeQ[n]&&Part[IntegerDigits[n], Ceiling[(Length[IntegerDigits[n]])/2]]==FixedPoint[Total[IntegerDigits[#]]&,Factorial[Floor[n/10^Ceiling[Length[IntegerDigits[n]]/2]]]^2],n,a],{n,100,10^8}],a] (* J.W.L. (Jan) Eerland, Dec 26 2021 *)

Extensions

More terms from J.W.L. (Jan) Eerland, Dec 26 2021
Showing 1-2 of 2 results.