cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083014 a(n) = Sum_{k=0..n-1} 10^k*B(k)*binomial(n,k) where B(k) is the k-th Bernoulli number.

This page as a plain text file.
%I A083014 #17 Feb 14 2023 15:41:06
%S A083014 0,1,-9,36,81,-1524,-4779,155316,643761,-28041444,-145069299,
%T A083014 7794224196,48371836041,-3078058903764,-22284938832219,
%U A083014 1637087002046676,13545357290061921,-1127884947406124484,-10498665795419017539,977073296798704710756
%N A083014 a(n) = Sum_{k=0..n-1} 10^k*B(k)*binomial(n,k) where B(k) is the k-th Bernoulli number.
%H A083014 Seiichi Manyama, <a href="/A083014/b083014.txt">Table of n, a(n) for n = 0..417</a>
%H A083014 Ira M. Gessel, <a href="https://doi.org/10.5281/zenodo.7625111">On the Almkvist-Meurman Theorem for Bernoulli Polynomials</a>, Integers (2023) Vol. 23, #A14.
%F A083014 E.g.f.: 10*x/(Sum_{i=0..9} exp(i*x)). - _Alois P. Heinz_, Sep 28 2016
%t A083014 Range[0, 15]! CoefficientList[ Series[ 10x/(1 + Exp[x] + Exp[ 2x] + Exp[ 3x] + Exp[ 4x] + Exp[ 5x] + Exp[ 6x] + Exp[ 7x] + Exp[ 8x] + Exp[ 9x]), {x, 0, 15}], x] (* _Robert G. Wilson v_, Oct 26 2012 *)
%t A083014 Array[Sum[10^k*BernoulliB[k]*Binomial[#, k], {k, 0, # - 1}] &, 20, 0] (* _Michael De Vlieger_, Feb 14 2023 *)
%o A083014 (PARI) a(n)=sum(k=0,n-1,10^k*binomial(n,k)*bernfrac(k))
%Y A083014 Cf. A001469.
%Y A083014 Cf. A036968, A083007, A083008, A083009, A083010, A083011, A083012, A083013.
%K A083014 sign
%O A083014 0,3
%A A083014 _Benoit Cloitre_, May 31 2003
%E A083014 Offset changed to 0 by _Seiichi Manyama_, Sep 28 2016