cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083024 Molien series for action of SL(3,C) on ternary forms of degree 4.

This page as a plain text file.
%I A083024 #21 Feb 05 2025 16:19:12
%S A083024 1,1,2,4,7,11,19,29,44,67,98,139,199,275,375,509,678,890,1165,1501,
%T A083024 1916,2431,3053,3801,4711,5788,7063,8580,10353,12420,14841,17633,
%U A083024 20850,24565,28807,33641,39161,45404,52455,60427,69372,79392,90627,103143,117065,132561
%N A083024 Molien series for action of SL(3,C) on ternary forms of degree 4.
%C A083024 These are the coefficients of the expansion in powers of z^4, the other coefficients being zero.
%D A083024 J-M. Kantor, Où en sont les mathématiques. La formule de Molien-Weyl, SMF, Vuibert, p. 79
%H A083024 T. Shioda, <a href="http://www.jstor.org/stable/2373415">On the graded ring of invariants of binary octavics</a>, Amer. J. Math. 89, 1022-1046, 1967.
%H A083024 <a href="/index/Mo#Molien">Index entries for Molien series</a>.
%H A083024 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-1,0,-2,0,2,0,0,1,0,-1,0,1,0,-1,0,0,-2,0,2,0,1,0,0,-1,-1,1).
%F A083024 G.f.: (1 + z^9 + z^12 + z^15 + 2*z^18 + 3*z^21 + 2*z^24 + 3*z^27 + 4*z^30 + 3*z^33 + 4*z^36 + 4*z^39 + 3*z^42 + 4*z^45 + 3*z^48 + 2*z^51 + 3*z^54 + 2*z^57 + z^60 + z^63 + z^75)/(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1-z^27).
%p A083024 seq(coeff(series( (1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 3*x^11 + 4*x^12 + 4*x^13 + 3*x^14 + 4*x^15 + 3*x^16 + 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 + x^25)/(1 - x^1 - x^2 + x^5 + 2*x^7 - 2*x^9 - x^12 + x^14 - x^16 + x^18 + 2*x^21 - 2*x^23 - x^25 + x^28 + x^29 - x^30), x, n+1), x, n), n = 0..45); # _Georg Fischer_, Jan 24 2021
%o A083024 (PARI) a(n)=polcoeff((1+z^9+z^12+z^15+2*z^18+3*z^21+2*z^24+3*z^27+4*z^30+3*z^33 +4*z^36+4*z^39+3*z^42+4*z^45+3*z^48+2*z^51+3*z^54+2*z^57+z^60+z^63+z^75) /(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1- z^27)+O(z^(n+1)),n)
%Y A083024 Cf. A008615.
%K A083024 nonn,easy
%O A083024 0,3
%A A083024 _Benoit Cloitre_, Jun 01 2003