This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083032 #44 Sep 08 2022 08:45:10 %S A083032 0,4,7,10,12,16,19,22,24,28,31,34,36,40,43,46,48,52,55,58,60,64,67,70, %T A083032 72,76,79,82,84,88,91,94,96,100,103,106,108,112,115,118,120,124,127, %U A083032 130,132,136,139,142,144,148,151,154,156,160,163,166,168,172 %N A083032 Numbers that are congruent to {0, 4, 7, 10} mod 12. %C A083032 Key-numbers of the pitches of a dominant seventh chord on a standard chromatic keyboard, with root = 0. %H A083032 G. C. Greubel, <a href="/A083032/b083032.txt">Table of n, a(n) for n = 1..1000</a> %H A083032 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1). %F A083032 G.f.: x^2*(4 + 3*x + 3*x^2 + 2*x^3)/((1 + x)*(1 + x^2)*(1 - x)^2). - _R. J. Mathar_, Oct 08 2011 %F A083032 From _Wesley Ivan Hurt_, May 19 2016: (Start) %F A083032 a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. %F A083032 a(n) = (12*n - 9 + (-1)^n + (-1)^((n+1)/2) + (-1)^(-(n+1)/2))/4. (End) %F A083032 a(2k) = A016957(k-1) for k > 0, a(2k-1) = A272975(k). - _Wesley Ivan Hurt_, Jun 01 2016 %F A083032 E.g.f.: (4 - sin(x) + (6*x - 5)*sinh(x) + (6*x - 4)*cosh(x))/2. - _Ilya Gutkovskiy_, Jun 01 2016 %F A083032 From _Jianing Song_, Sep 22 2018: (Start) %F A083032 a(n) = (12*n - 9 + (-1)^n - 2*sin(n*Pi/2))/4. %F A083032 a(n) = a(n-4) + 12 for n > 4. (End) %F A083032 Sum_{n>=2} (-1)^n/a(n) = log(3)/8 - log(2)/12 + sqrt(3)*log(sqrt(3)+2)/12 - (5*sqrt(3)-6)*Pi/72. - _Amiram Eldar_, Dec 31 2021 %p A083032 A083032:=n->(12*n-9+(-1)^n+(-1)^((n+1)/2)+(-1)^(-(n+1)/2))/4: seq(A083032(n), n=1..100); # _Wesley Ivan Hurt_, May 19 2016 %t A083032 Select[Range[0,200], MemberQ[{0,4,7,10}, Mod[#,12]]&] (* _Harvey P. Dale_, Sep 13 2011 *) %t A083032 LinearRecurrence[{1,0,0,1,-1},{0,4,7,10,12},100] (* _G. C. Greubel_, Jun 01 2016 *) %o A083032 (Magma) [(12*n-9+(-1)^n+(-1)^((n+1) div 2)+(-1)^(-(n+1) div 2))/4: n in [1..100]]; // _Wesley Ivan Hurt_, May 19 2016 %o A083032 (PARI) my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+3*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ _Altug Alkan_, Sep 21 2018 %o A083032 (GAP) Filtered([0..200],n-> n mod 12=0 or n mod 12=4 or n mod 12=7 or n mod 12=10); # _Muniru A Asiru_, Sep 22 2018 %Y A083032 Bisections: A016957, A272975. %Y A083032 A guide for some sequences related to modes and chords: %Y A083032 Modes: %Y A083032 Lydian mode (F): A083089 %Y A083032 Ionian mode (C): A083026 %Y A083032 Mixolydian mode (G): A083120 %Y A083032 Dorian mode (D): A083033 %Y A083032 Aeolian mode (A): A060107 (raised seventh: A083028) %Y A083032 Phrygian mode (E): A083034 %Y A083032 Locrian mode (B): A082977 %Y A083032 Chords: %Y A083032 Major chord: A083030 %Y A083032 Minor chord: A083031 %Y A083032 Dominant seventh chord: this sequence %K A083032 nonn,easy %O A083032 1,2 %A A083032 James Ingram (j.ingram(AT)t-online.de), Jun 01 2003