This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083034 #35 Nov 06 2023 18:12:44 %S A083034 0,1,3,5,7,8,10,12,13,15,17,19,20,22,24,25,27,29,31,32,34,36,37,39,41, %T A083034 43,44,46,48,49,51,53,55,56,58,60,61,63,65,67,68,70,72,73,75,77,79,80, %U A083034 82,84,85,87,89,91,92,94,96,97,99,101,103,104,106,108,109,111 %N A083034 Numbers that are congruent to {0, 1, 3, 5, 7, 8, 10} mod 12. %C A083034 Key-numbers of the pitches of a Phrygian mode scale on a standard chromatic keyboard, with root = 0. A Phrygian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone E. %H A083034 Vincenzo Librandi, <a href="/A083034/b083034.txt">Table of n, a(n) for n = 1..2000</a> %H A083034 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1). %F A083034 G.f.: x^2*(x + 1)*(2*x^5 + x^3 + x^2 + x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - _R. J. Mathar_, Oct 08 2011 %F A083034 From _Wesley Ivan Hurt_, Jul 20 2016: (Start) %F A083034 a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8. %F A083034 a(n) = (84*n - 98 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) + 5*((n + 5) mod 7) - 2*((n + 6) mod 7))/49. %F A083034 a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 11, a(7k-6) = 12k - 12. (End) %F A083034 a(n) = a(n-7) + 12 for n > 7. - _Jianing Song_, Sep 22 2018 %F A083034 a(n) = floor((12*n - 11) / 7). - _Federico Provvedi_, Nov 06 2023 %p A083034 A083034:= n-> 12*floor((n-1)/7)+[0, 1, 3, 5, 7, 8, 10][((n-1) mod 7)+1]: %p A083034 seq(A083034(n), n=1..100); # _Wesley Ivan Hurt_, Jul 20 2016 %t A083034 Select[Range[0, 150], MemberQ[{0, 1, 3, 5, 7, 8, 10}, Mod[#, 12]] &] (* _Wesley Ivan Hurt_, Jul 20 2016 *) %t A083034 LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 5, 7, 8, 10, 12}, 70] (* _Jianing Song_, Sep 22 2018 *) %t A083034 Quotient[12 # - 11, 7] & /@ Range[96] (* _Federico Provvedi_, Nov 06 2023 *) %o A083034 (Magma) [n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 7, 8, 10]]; // _Wesley Ivan Hurt_, Jul 20 2016 %o A083034 (PARI) my(x='x+O('x^99)); concat(0, Vec(x^2*(x+1)*(2*x^5+x^3+x^2+x+1)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ _Jianing Song_, Sep 22 2018 %Y A083034 A guide for some sequences related to modes and chords: %Y A083034 Modes: %Y A083034 Lydian mode (F): A083089 %Y A083034 Ionian mode (C): A083026 %Y A083034 Mixolydian mode (G): A083120 %Y A083034 Dorian mode (D): A083033 %Y A083034 Aeolian mode (A): A060107 (raised seventh: A083028) %Y A083034 Phrygian mode (E): this sequence %Y A083034 Locrian mode (B): A082977 %Y A083034 Chords: %Y A083034 Major chord: A083030 %Y A083034 Minor chord: A083031 %Y A083034 Dominant seventh chord: A083032 %K A083034 nonn,easy %O A083034 1,3 %A A083034 James Ingram (j.ingram(AT)t-online.de), Jun 01 2003