This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083067 #22 Sep 08 2022 08:45:10 %S A083067 1,6,41,286,2001,14006,98041,686286,4804001,33628006,235396041, %T A083067 1647772286,11534406001,80740842006,565185894041,3956301258286, %U A083067 27694108808001,193858761656006,1357011331592041,9499079321144286 %N A083067 6th row of number array A083064. %C A083067 Binomial transform of A052934 - _Paul Barry_, Apr 30 2003 %C A083067 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). [From _Milan Janjic_, Feb 21 2010] %H A083067 Vincenzo Librandi, <a href="/A083067/b083067.txt">Table of n, a(n) for n = 0..1000</a> %H A083067 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-7). %F A083067 a(n) = (5*7^n+1)/6. %F A083067 G.f.: (1-2*x)/((1-7*x)*(1-x)). %F A083067 E.g.f.: (5*exp(7*x)+exp(x))/6. %F A083067 a(n) = 7*a(n-1)-1 with a(0)=1. - _Vincenzo Librandi_, Aug 08 2010 %F A083067 a(n) = 8*a(n-1)-7*a(n-2). - _Vincenzo Librandi_, Nov 06 2011 %F A083067 a(n) = 7^n - sum(7^i, i=0..n-1) for n>0. [_Bruno Berselli_, Jun 20 2013] %t A083067 f[n_]:=7^n; lst={}; Do[a=f[n]; Do[a-=f[m],{m,n-1,1,-1}]; AppendTo[lst,a/7],{n,1,30}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 10 2010 *) %o A083067 (Magma) [(5*7^n+1)/6: n in [0..30]]; // _Vincenzo Librandi_, Nov 06 2011 %Y A083067 Cf. A083066, A083068. %K A083067 nonn,easy %O A083067 0,2 %A A083067 _Paul Barry_, Apr 21 2003