This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A083074 #39 Aug 09 2025 10:05:02 %S A083074 -1,-2,1,14,43,94,173,286,439,638,889,1198,1571,2014,2533,3134,3823, %T A083074 4606,5489,6478,7579,8798,10141,11614,13223,14974,16873,18926,21139, %U A083074 23518,26069,28798,31711,34814,38113,41614,45323,49246,53389,57758,62359,67198,72281 %N A083074 a(n) = n^3 - n^2 - n - 1. %C A083074 Values of tribonacci polynomial n^3 - n^2 - n - 1 for n >= 0. - _Artur Jasinski_, Nov 19 2006 %H A083074 Vincenzo Librandi, <a href="/A083074/b083074.txt">Table of n, a(n) for n = 0..780</a> %H A083074 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A083074 a(n) = n^3 + 5*n^2 + 7*n + 1 = (n*(n + 2)^3 + 1)/(n + 1) [with a different offset]. %F A083074 G.f.: (2*x^3+3*x^2+2*x-1)/(x-1)^4. - _Alois P. Heinz_, Jan 25 2023 %F A083074 From _Elmo R. Oliveira_, Aug 08 2025: (Start) %F A083074 E.g.f.: exp(x)*(-1 - x + 2*x^2 + x^3). %F A083074 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End) %t A083074 Table[n^3 - n^2 - n - 1, {n, 0, 41}] (* _Artur Jasinski_, Nov 19 2006 *) %t A083074 LinearRecurrence[{4,-6,4,-1},{-1,-2,1,14},50] (* _Harvey P. Dale_, Oct 11 2020 *) %o A083074 (Magma) [n^3 - n^2 - n - 1: n in [0..60]]; // _Vincenzo Librandi_, Apr 26 2011 %o A083074 (PARI) a(n)=n^3-n^2-n-1 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A083074 Apart from initial terms, a column of A083064. %Y A083074 Cf. A000027, A002378, A028387. %K A083074 easy,sign %O A083074 0,2 %A A083074 _Paul Barry_, Apr 21 2003 %E A083074 Simpler definition from _Alonso del Arte_, Sep 16 2004